精英家教網 > 初中數學 > 題目詳情

【題目】如圖,正方形ABCD的邊長為10,點E、F分別在邊BC、CD上,且∠EAF=45°,AHEF于點H,AH=10,連接BD,分別交AE、AH、AF于點P、G、Q.

(1)求CEF的周長;

(2)若EBC的中點,求證:CF=2DF;

(3)連接QE,求證:AQ=EQ.

【答案】(1)ECF的周長為20;(2)證明見解析;(3)證明見解析.

【解析】

(1)想辦法證明EB=EH,FD=FH,即可解決問題;

(2)通過計算求出CF、DF即可解決問題;

(3)想辦法證明APB∽△QPE,可得∠AEQ=ABP=45°即可解決問題.

(1)在RtABERtAHE中,

∵∠ABE=AHE=90°,AB=AH=10,AE=AE,

∴△ABE≌△AHE,

BE=HE,同理,DF=FH,

∴△ECF的周長=CE+CF+EF=CE=CE+BE+CF+FD=CB+CD=20.

(2)EBC中點,

BE=EC=EH=5,設DF=FH=x,則CF=10﹣x,

RtECF中,∵∠C=90°,

EF2=EC2+CF2,

52+(10﹣x)2=(5+x)2,

解得x=,即DF=,則CF=10﹣=,

CF=2DF;

(3)在BPEAPQ中,∠EBP=QAP=45°,BPE=APQ,

∴△BPE∽△APQ,

=,

=,

∵∠APB=QPE,

∴△APB∽△QPE,

∴∠QEP=ABP=45°,

∵∠EAF=45°,

∴∠QEA=QAE=45°,

AQ=EQ.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】等邊三角形ABC的邊長為6,在AC,BC邊上各取一點E,F,連接AF,BE相交于點P.

(1)若AE=CF;

①求證:AF=BE,并求APB的度數;

②若AE=2,試求APAF的值;

(2)若AF=BE,當點E從點A運動到點C時,試求點P經過的路徑長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,BC是⊙O的切線,切點為B,OC相交于點D,且CD=2,BC=4,

(1)求⊙O的半徑;

(2)連接AD并延長,交BC于點E,取BE的中點F,連接DF,試判斷DF與⊙O的位置關系,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABCAC=BC,ACB=90°,以BC為直徑作⊙O,連接OA,交⊙O于點D,過D點作⊙O的切線交AC于點E,連接B、D并延長交AC于點F.則下列結論錯誤的是( 。

A. ADE∽△ACO B. AOC∽△BFC

C. DEF∽△DOC D. CD2=DFDB

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:△ABC在直角坐標平面內,三個頂點的坐標分別為A(0,3)、B(3,4)、C(2,2)(正方形網格中每個小正方形的邊長是一個單位長度).

(1)畫出△ABC向下平移4個單位長度得到的△A1B1C1,點C1的坐標是   ;

(2)以點B為位似中心,在網格內畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,點C2的坐標是   

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】1)如圖1.在△ABC中,B=60°,DAC和∠ACE的角平分線交于點O,則∠O=     °,

2)如圖2,若∠B,其他條件與(1)相同,請用含α的代數式表示∠O的大;

3)如圖3,若∠B,則∠P=     (用含α的代數式表示).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,中,點邊上一個動點,過作直線,交的平分線于點,交的外角平分線于點

請說明:;

當點邊上運動到何處時,四邊形是矩形?為什么?

的條件下,滿足什么條件時,四邊形是正方形?為什么?

當點在邊上運動時,四邊形可能是菱形嗎?請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:正方形ABCD中,AB=4,ECD邊中點,FAD邊中點,AEBDG,交BFH,連接DH.

(1)求證:BG=2DG;

(2)求AH:HG:GE的值;

(3)求的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,D、E分別是ABCAB、BC上的點,AD=2BD,BE=CE,若SABC=18,ADF的面積為S1,CEF的面積為S2,則S1-S2的值是______.

查看答案和解析>>

同步練習冊答案