【題目】如圖,正方形ABCD的邊長為25,內(nèi)部有6個全等的正方形,小正方形的頂點EFG、H分別落在邊ADAB、BC、CD上,則每個小正方形的邊長為_____

【答案】

【解析】

如圖,過點GGPAD,垂足為P,可以得到BGF∽△PGE,再根據(jù)相似三角形對應(yīng)邊成比例的性質(zhì)列式求解即可得到DEBG,根據(jù)勾股定理可求EG的長,進而求出每個小正方形的邊長.

解:如圖所示:

∵正方形ABCD邊長為25,

∴∠A=B=90°,AB=25

過點GGPAD,垂足為P,則∠4=5=90°

∴四邊形APGB是矩形,

∴∠2+3=90°,PG=AB=25,

∵六個大小完全一樣的小正方形如圖放置在大正方形中,

∴∠1+2=90°,

∴∠1=FGB,

∴△BGF∽△PGE

= ,

= ,

GB=5

AP=5

同理DE=5

PE=ADAPDE=15

EG==5,

∴小正方形的邊長為

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,BABCBD平分∠ABC

1)求證:四邊形ABCD是菱形;

2)過點DDEBD,交BC的延長線于點E,若BC5,BD8,求四邊形ABED的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在每個小正方形的邊長為1的網(wǎng)格中,點,,均在格點上,點是在直線上的動點,連,點是點關(guān)于直線的對稱點.

1)在圖①中,當(dāng)(點在點的左側(cè))時,計算的值等于______.

2)當(dāng)取得最小值時,請在如圖②所示的網(wǎng)格中,用無刻度的直尺畫出點,并簡要說明點的位置是如何找到的.(不要求證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,反比例函數(shù)的圖象經(jīng)過點(1,-6).

1)求m的值;

2)橫、縱坐標(biāo)都是整數(shù)的點叫做整點.記直線與反比例函數(shù)的圖象圍成的區(qū)域為W(不含邊界).若區(qū)域W內(nèi)恰有1個整點,結(jié)合函數(shù)圖象,直接寫出b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在綜合實踐課上,小聰所在小組要測量一條河的寬度,如圖,河岸EF∥MN,小聰在河岸MN上點A處用測角儀測得河對岸小樹C位于東北方向,然后沿河岸走了30米,到達B處,測得河對岸電線桿D位于北偏東30°方向,此時,其他同學(xué)測得CD=10米.請根據(jù)這些數(shù)據(jù)求出河的寬度.(精確到0.1)(參考數(shù)據(jù): ≈1.414, ≈1.132)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知二次函數(shù)y=ax2+x+c(a≠0)的圖象與y軸交于點A(0,4),與x軸交于點B、C,點C坐標(biāo)為(8,0),連接AB、AC.

(1)請直接寫出二次函數(shù)y=ax2+x+c的表達式;

(2)判斷△ABC的形狀,并說明理由;

(3)若點N在x軸上運動,當(dāng)以點A、N、C為頂點的三角形是等腰三角形時,請寫出此時點N的坐標(biāo);

(4)如圖2,若點N在線段BC上運動(不與點B、C重合),過點N作NM∥AC,交AB于點M,當(dāng)△AMN面積最大時,求此時點N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將矩形紙片OABC放在平面直角坐標(biāo)系中,0為坐標(biāo)原點,點A在y軸上,點C在x軸上,點B的坐標(biāo)是(8,6),點P是邊AB上的一個動點,將△OAP沿OP折疊,使點A落在點Q處.

(1)如圖①,當(dāng)點Q恰好落在OB上時.求點p的坐標(biāo);

(2)如圖②,當(dāng)點P是AB中點時,直線OQ交BC于M點.

①求證:MB=MQ;②求點Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校舉辦朗誦比賽,比賽結(jié)束后,對學(xué)生的成績進行了統(tǒng)計.繪制出如下的統(tǒng)計圖①和圖②.請根據(jù)相關(guān)信息,解答下列問題:

1)參加這次比賽的人數(shù)為 ,圖①中的值為

2)求統(tǒng)計的這組學(xué)生朗誦比賽成績數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點軸非負(fù)半軸上的動點,點坐標(biāo)為,是線段的中點,將點繞點順時針方向旋轉(zhuǎn)90°得到點,過點軸的垂線,垂足為,過點軸的垂線與直線相交于點,連接,設(shè)點的橫坐標(biāo)為

1)當(dāng)時,求點的坐標(biāo);

2)設(shè)的面積為,當(dāng)點在線段上時,求之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

3)當(dāng)為何值時,取得最小值.

查看答案和解析>>

同步練習(xí)冊答案