【題目】如圖,折線AC﹣BC是一條公路的示意圖,AC=8km,甲騎摩托車從A地沿這條公路到B地,速度為40km/h,乙騎自行車從C地到B地,速度為10km/h,兩人同時出發(fā),結(jié)果甲比乙早到6分鐘.

(1)求這條公路的長;
(2)設(shè)甲乙出發(fā)的時間為t小時,求甲沒有超過乙時t的取值范圍.

【答案】
(1)

解:設(shè)這條公路的長為xkm,由題意得,

,

解這個方程得,x=12.

答:這條公路的長12km


(2)

解:由題意得,40t≤10t+8,

解這個不等式得:

答:當 時,甲沒有超過乙


【解析】(1)設(shè)這條公路的長為xkm,則BC=(x﹣8)km,有題意可得等量關(guān)系:乙從C地到B地所用的時間﹣甲從A地沿這條公路到B地所用的時間=6分鐘,根據(jù)等量關(guān)系列出方程即可;(2)根據(jù)題意得出不等關(guān)系:甲t小時的路程≤乙t小時的路程+8km,根據(jù)不等關(guān)系列出不等式即可.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,A(a,0),B(0,b),a,b滿足=0,CAB的中點,P是線段AB上一動點,Dx軸正半軸上一點,且PO=PD,DEABE.

(1)求∠OAB的度數(shù)

(2)當點P運動時,PE的長是否變化?若變化,請說明理由;若不變,請求PE的長

(3)若∠OPD=45度,求點D的坐標

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形ABCD與正五邊形EFGHM的邊長相等,初始如圖所示,將正方形繞點F順時針旋轉(zhuǎn)使得BC與FG重合,再將正方形繞點G順時針旋轉(zhuǎn)使得CD與GH重合…按這樣的方式將正方形依次繞點H、M、E旋轉(zhuǎn)后,正方形中與EF重合的是( )

A.AB
B.BC
C.CD
D.DA

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,平行四邊形ABCD的周長是26cm,對角線ACBD相交于點O, AC⊥AB,EBC的中點,△AOD的周長比△AOB的周長多3cm,則AE =_____cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AD∥BC AD = 9cm,BC = 6cm,點P、Q分別從點A、C同時出發(fā),點P以1cm/s的速度由AD運動,點Q以2cm/s的速度由CB運動.問幾秒后直線PQ將四邊形ABCD截出一個平行四邊形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1和2,四邊形ABCD是菱形,點P是對角線AC上一點,以點P為圓心,PB為半徑的弧,交BC的延長線于點F,連接PF,PD,PB.

(1)如圖1,點P是AC的中點,請寫出PF和PD的數(shù)量關(guān)系:;

(2)如圖2,點P不是AC的中點,
①求證:PF=PD.
②若∠ABC=40°,直接寫出∠DPF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,BE平分∠ABC,CF平分∠BCD,BE、CF交于點G.若使EF= AD,那么平行四邊形ABCD應(yīng)滿足的條件是( )

A.∠ABC=60°
B.AB:BC=1:4
C.AB:BC=5:2
D.AB:BC=5:8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在紙面上有一數(shù)軸(如圖),折疊紙面.

(1)若表示﹣1的點與表示3的點重合,回答以下問題:

①表示5的點與表示數(shù)_________的點重合;

②若數(shù)軸上A、B兩點之間的距離為9(A在B的左側(cè)),且A、B兩點經(jīng)折疊后重合,求A、B兩點表示的數(shù)是多少?

(2)若點D表示的數(shù)為x,則當x為_______時,|x+1|與|x﹣2|的值相等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】福鼎市南溪水庫的警戒水位是,以下是南溪水庫管理處七月份某周監(jiān)測到的水位變化情況,上周末恰好達到警戒水位(正數(shù)表示比前一天水位高,負數(shù)表示比前一天水位低).

星期

水位變化

星期四的水位是多少?

從這周一到周日哪天的水位是最高的?

以警戒水位為零點,用折線圖表表示本周水位情況.

查看答案和解析>>

同步練習冊答案