【題目】如圖,ABC中,AB=AC,以AB為直徑的⊙O分別交AC、BC于點(diǎn)DF,連接BDOF于點(diǎn)E

1)求證:OFBD

2)若AB=,DF=,求AD的長.

【答案】1)見解析;(2

【解析】

1)連接AF.根據(jù)直徑所對的圓周角是直角、等腰三角形的性質(zhì)以及平行線的性質(zhì)即可證明;
2)設(shè)AD=x.根據(jù)圓周角定理的推論和勾股定理進(jìn)行求解.

解:(1)證明:連接AF,如圖所示:

AB是⊙O的直徑,

∴∠AFB=ADB=90°,

AB=AC,

FC=FB

OA=OB

ODAC

∴∠OEB=ADB=90°,

OFBD

2)設(shè)AD=x

OFBD,

∴可得OFBD的中垂線,

FD=FB,

∴∠1=2,

BF=DF=

OFDB,

ED=EB

OE=AD=FE=OFOE=,

RtFEB中,BE2=EB2FE2=;

RtOFB中,BE2=OB2OE2=;

=

解得:x=

AD=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的一元二次方程

1)求證:無論取何實數(shù),方程總有兩個不相等的實數(shù)根;

2)若方程的一個根是3,求的值及方程的另一個根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于氣溫,有的地方用攝氏溫度表示,有的地方用華氏溫度表示,攝氏溫度與華氏溫度之間是一次函數(shù)關(guān)系.如圖所示是一個家用溫度表的表盤、其左邊為攝氏溫度的刻度和讀數(shù)(單位),右邊為華氏溫度的刻度和讀數(shù)(單位).從溫度計的刻度上可以看出,攝氏溫度與華氏溫度部分對應(yīng)關(guān)系如下表:

···

···

···

···

1)求之間的函數(shù)關(guān)系式;

2)當(dāng)攝氏溫度為零下時,求華氏溫度為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于O,直徑AC與弦BD的交點(diǎn)為EOBCD,BHAC,垂足為H,且∠BFA=∠DBC

1)求證:BFO的切線;

2)若BH3,求AD的長度;

3)若sinDAC,求△OBH的面積與四邊形OBCD的面積之比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD邊長為4,EF、G、H分別是AB、BCCD、DA上的點(diǎn),且AEBFCGDH.設(shè)A、E兩點(diǎn)間的距離為x,四邊形EFGH的面積為y,則yx的函數(shù)圖象可能是(  )

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“足球運(yùn)球”是中考體育必考項目之一.蘭州市某學(xué)校為了解今年九年級學(xué)生足球運(yùn)球的掌握情況,隨機(jī)抽取部分九年級學(xué)生足球運(yùn)球的測試成績作為一個樣本,按A,B,C,D四個等級進(jìn)行統(tǒng)計,制成了如下不完整的統(tǒng)計圖.(說明:A級:8分﹣10分,B級:7分﹣7.9分,C級:6分﹣6.9分,D級:1分﹣5.9分)

根據(jù)所給信息,解答以下問題:

(1)在扇形統(tǒng)計圖中,C對應(yīng)的扇形的圓心角是   度;

(2)補(bǔ)全條形統(tǒng)計圖;

(3)所抽取學(xué)生的足球運(yùn)球測試成績的中位數(shù)會落在   等級;

(4)該校九年級有300名學(xué)生,請估計足球運(yùn)球測試成績達(dá)到A級的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一帶一路倡議提出五年多來,交通、通信、能源等各項相關(guān)建設(shè)取得積極進(jìn)展,也為增進(jìn)各國民眾福祉提供了新的發(fā)展機(jī)遇.下圖是2017一年一路沿線部分國家的通信設(shè)施現(xiàn)狀統(tǒng)計圖.

根據(jù)統(tǒng)計圖提供的信息,下列推斷合理的是( ).

A.互聯(lián)網(wǎng)服務(wù)器擁有個數(shù)最多的國家是阿聯(lián)酋

B.寬帶用戶普及率的中位數(shù)是11.05%

C.8個國家的電話普及率能夠達(dá)到平均每人1

D.只有俄羅斯的三項指標(biāo)均超過了相應(yīng)的中位數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將拋物線向右平移個單位,再向上平移個單位,得到拋物線,直線的一個交點(diǎn)記為,與的一個交點(diǎn)記為,點(diǎn)的橫坐標(biāo)是,點(diǎn)在第一象限內(nèi).

1)求點(diǎn)的坐標(biāo)及的表達(dá)式;

2)點(diǎn)是線段上的一個動點(diǎn),過點(diǎn)軸的垂線,垂足為,在的右側(cè)作正方形

①當(dāng)點(diǎn)的橫坐標(biāo)為時,直線恰好經(jīng)過正方形的頂點(diǎn),求此時的值;

②在點(diǎn)的運(yùn)動過程中,若直線與正方形始終沒有公共點(diǎn),直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】反比例函數(shù)在第一象限的圖象如圖所示,過上任意一點(diǎn),作軸垂線交于點(diǎn),交軸于點(diǎn),作軸垂線,交于點(diǎn),交軸于點(diǎn),直線分別交軸,軸于點(diǎn),則__________

查看答案和解析>>

同步練習(xí)冊答案