【題目】小磊要制作一個(gè)三角形的鋼架模型,在這個(gè)三角形中,長(zhǎng)度為x(單位:cm)的邊與這條邊上的高之和為40cm,這個(gè)三角形的面積S(單位:cm2)隨x(單位:cm)的變化而變化.
(1)請(qǐng)直接寫(xiě)出S與x之間的函數(shù)關(guān)系式(不要求寫(xiě)出自變量x的取值范圍);
(2)當(dāng)x是多少時(shí),這個(gè)三角形面積S最大?最大面積是多少?

【答案】
(1)解:S=﹣ x2+20x
(2)解:∵﹣ <0,

∴S有最大值,

∴當(dāng)x=﹣ =﹣ =20時(shí),

S有最大值為 = =200cm2

∴當(dāng)x為20cm時(shí),三角形最大面積是200cm2


【解析】(1)S= x×這邊上的高,把相關(guān)數(shù)值代入化簡(jiǎn)即可;(2)結(jié)合(1)得到的關(guān)系式,利用公式法求得二次函數(shù)的最值即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果二次根式 能夠合并,能否由此確定a=1?若能,請(qǐng)說(shuō)明理由;不能,請(qǐng)舉一個(gè)反例說(shuō)明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BC是⊙O的直徑,點(diǎn)A在⊙O上,AD⊥BC,垂足為D,弧AE等于弧AB,BE分別交AD、AC于點(diǎn)F、G.
(1)判斷△FAG的形狀,并說(shuō)明理由;
(2)若點(diǎn)E和點(diǎn)A在BC的兩側(cè),BE、AC的延長(zhǎng)線(xiàn)交于點(diǎn)G,AD的延長(zhǎng)線(xiàn)交BE于點(diǎn)F,其余條件不變,(1)中的結(jié)論還成立嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)y=x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點(diǎn).
(1)求該拋物線(xiàn)的解析式;
(2)求該拋物線(xiàn)的對(duì)稱(chēng)軸以及頂點(diǎn)坐標(biāo);
(3)設(shè)(1)中的拋物線(xiàn)上有一個(gè)動(dòng)點(diǎn)P,當(dāng)點(diǎn)P在該拋物線(xiàn)上滑動(dòng)到什么位置時(shí),滿(mǎn)足SPAB=8,并求出此時(shí)P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一塊三角形材料如圖所示,∠A=30°,∠C=90°,AB=12,用這塊材料剪出一個(gè)矩形CDEF,其中D、E、F分別在BC、AB、AC上.
(1)若設(shè)AE=x,則AF=;(用含x的代數(shù)式表示)
(2)要使剪出的矩形CDEF的面積最大,點(diǎn)E應(yīng)選在何處?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四邊形ABCD是正方形,E、F分別是DC和CB的延長(zhǎng)線(xiàn)上的點(diǎn),且DE=BF,連接AE、AF、EF.
(1)試判斷△AEF的形狀,并說(shuō)明理由;
(2)填空:△ABF可以由△ADE繞旋轉(zhuǎn)中心點(diǎn),按順時(shí)針?lè)较蛐D(zhuǎn)度得到;
(3)若BC=8,則四邊形AECF的面積為 . (直接寫(xiě)結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),長(zhǎng)方形OACB的頂點(diǎn)A、B分別在x軸與y軸上,已知OA=6,OB=10.點(diǎn)Dy軸上一點(diǎn),其坐標(biāo)為(0,2),點(diǎn)P從點(diǎn)A出發(fā)以每秒2個(gè)單位的速度沿線(xiàn)段ACCB的方向運(yùn)動(dòng),當(dāng)點(diǎn)P與點(diǎn)B重合時(shí)停止運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒.

(1)當(dāng)點(diǎn)P經(jīng)過(guò)點(diǎn)C時(shí),求直線(xiàn)DP的函數(shù)解析式;

(2)如圖②,把長(zhǎng)方形沿著OP折疊,點(diǎn)B的對(duì)應(yīng)點(diǎn)B′恰好落在AC邊上,求點(diǎn)P的坐標(biāo).

(3)點(diǎn)P在運(yùn)動(dòng)過(guò)程中是否存在使△BDP為等腰三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知OAB,EOF都是等腰直角三角形,AOB=900,,EOF=900,連結(jié)AE、BF

求證:(1AE=BF;(2AEBF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,拋物線(xiàn)y=ax2+bx+2與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,AB=4,矩形OBDC的邊CD=1,延長(zhǎng)DC交拋物線(xiàn)于點(diǎn)E.

(1)求拋物線(xiàn)的解析式;
(2)如圖2,點(diǎn)P是直線(xiàn)EO上方拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作y軸的平行線(xiàn)交直線(xiàn)EO于點(diǎn)G,作PH⊥EO,垂足為H.設(shè)PH的長(zhǎng)為l,點(diǎn)P的橫坐標(biāo)為m,求l與m的函數(shù)關(guān)系式(不必寫(xiě)出m的取值范圍),并求出l的最大值;

(3)如果點(diǎn)N是拋物線(xiàn)對(duì)稱(chēng)軸上的一點(diǎn),拋物線(xiàn)上是否存在點(diǎn)M,使得以M,A,C,N為頂點(diǎn)的四邊形是平行四邊形?若存在,直接寫(xiě)出所有滿(mǎn)足條件的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案