【題目】如圖,一次函數(shù)y1=﹣x+5與反比例函數(shù)y2=的圖象交于A(1,m)、B(4,n)兩點.
(1)求A、B兩點的坐標(biāo)和反比例函數(shù)的解析式;
(2)求△AOB的面積.
【答案】(1)A點坐標(biāo)為(1,4),B點坐標(biāo)為(4,1),反比例函數(shù)解析式為y2=;(2)7.5.
【解析】
(1)將A,B兩點坐標(biāo)代入一次函數(shù)解析式求解,然后用待定系數(shù)法求得反比例函數(shù)的解析式;(2)設(shè)一次函數(shù)圖象與x軸交于點C,利用S△AOB=S△AOC﹣S△BOC
求解.
(1)分別把A(1,m)、B(4,n)代入y1=﹣x+5,
得m=﹣1+5=4,n=﹣4+5=1,
所以A點坐標(biāo)為(1,4),B點坐標(biāo)為(4,1),
把A(1,4)代入y2=,得k=1×4=4,
所以反比例函數(shù)解析式為y2=;
(2)如圖,設(shè)一次函數(shù)圖象與x軸交于點C,
當(dāng)y=0時,﹣x+5=0,解得x=5,則C點坐標(biāo)為(5,0),
所以S△AOB=S△AOC﹣S△BOC
=×5×4﹣×5×1=7.5.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點E、F分別在BC和CD上,AE=AF.
(1)求證:CE=CF.
(2)連接AC交EF于點O,延長OC至點M,使OM=OA,連接EM、FM.判斷四邊形AEMF是什么特殊四邊形?并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+c(a≠0)的部分圖象如圖所示,則下面結(jié)論中不正確的是( )
A.ac<0
B.2a+b=0
C.b2<4ac
D.方程ax2+bx+c=0的根是﹣1,3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程m x2-(m+2)x+2=0(m≠0).
(1)求證:無論m為何值時,這個方程總有兩個實數(shù)根;
(2)若方程的兩個實數(shù)根都是整數(shù),求正整數(shù)m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列說法:
①2a+b=0,
②9a+3b+c=0,
③當(dāng)-1≤x≤3時,y<0,
④若(x1,y1)、(x2,y2)在函數(shù)圖象上,當(dāng)x1<x2時,y1<y2.
其中正確的是( 。
A.①②④B.①②③C.①②D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中, O為BD中點,以BC為邊向正方形內(nèi)作等邊BCE,連接并延長AE交CD于F,連接BD分別交CE,AF于G ,H ,下列結(jié)論:①∠CEH=45°;②GF//DE;③2OH+DH=BD;④BG=DG;⑤△BEC : S△BGC=.其中正確的結(jié)論是( )
A.①②⑤B.①②④C.①②D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),在平行四邊形ABCD中,AB=20, AD=30,∠ABC=60° ,點P從點D出發(fā)沿DC向點C勻速運動,速度為每秒3個單位長度; 同時,點Q從點B出發(fā)沿BA向點A勻速運動,速度為每秒2個單位長度.當(dāng)點P停止運動時,點Q也隨之停止運動. 過點P作PM⊥AD交AD于點M ,連接PQ,QM ,設(shè)運動的時間為t秒().
(1)當(dāng)QP⊥PM時,求t的值;
(2)如圖(2)連接MC,是否存在t值 ,使得△PQM的面積是平行四邊形ABCD面積的? 若存在,求出對應(yīng)的t值;若不存在, 請說明理由;
(3)如圖(3),過點M作MN//AB交于點N,是否 存在t的值, 使得點P在線段MN的垂直平分線上? 若存在, 求出對應(yīng)的t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB、AC分別為⊙O的直徑和弦,D為的中點,DE垂直于AC的延長線于E,連結(jié)BC,若DE=6cm, CE=2cm,下列結(jié)論:①. DE是⊙O的切線;②. 直徑AB長為20cm;③. 弦AC長為15cm;④. C為的中點.一定正確的個數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=(x﹣1)2+k的圖象與x軸交于點A(﹣1,0),C兩點,與y軸交于點B.
(1)求拋物線解析式及B點坐標(biāo);
(2)在拋物線上是否存在點P使S△PAC=S△ABC?若存在,求出P點坐標(biāo),若不存在,請說明理由;
(3)在拋物線的對稱軸上是否存在點Q,使△ABQ是等腰三角形,若存在,求出Q點坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com