【題目】拋物線yax2+bx+ca0)的部分圖象如圖所示,則下面結(jié)論中不正確的是( )

A.ac0

B.2a+b0

C.b24ac

D.方程ax2+bx+c0的根是﹣1,3

【答案】C

【解析】

根據(jù)圖象的開口方向及與y軸的交點可得ac的符號,根據(jù)對稱軸可確定b的符號,可對A、B進行判斷,根據(jù)圖象與x軸的交點可C、D進行判斷,即可得答案.

∵圖象開口向下,與y軸交于y軸正半軸,

a0,c>0,

ac<0,故A正確,

∵對稱軸x1=﹣

b=﹣2a,

2a+b0,故B正確,

∵圖象與x軸的一個交點坐標為(3,0),對稱軸為x=1,

b24ac0,即b24ac,另一個交點為(﹣1,0),

∴方程ax2+bx+c0的根是﹣1,3,故C錯誤,D正確,

故選C

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】為了預(yù)防“流感”,某學校對教室采用藥熏法進行消毒,已知藥物燃燒時,室內(nèi)每立方米空氣中的含藥量y(毫克/立方米)與藥物點燃后的時間x(分鐘)成正比例,藥物燃盡后,y與x成反比例(如圖所示).已知藥物點燃后4分鐘燃盡,此時室內(nèi)每立方米空氣中含藥量為8毫克.

(1)求藥物燃燒時,y與x之間函數(shù)的表達式;

(2)求藥物燃盡后,y與x之間函數(shù)的表達式;

(3)研究表明,當空氣中每立方米的含藥量不低于2毫克時,才能有效殺滅空氣中的病菌,那么此次消毒有效時間有多長?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】長沙市教育局組織部分教師分別到A、BC、D四個地方進行課程培訓,教育局按定額購買了前往四地的車票,如圖1是未制作完成的車票種類和數(shù)量的條形統(tǒng)計圖,請根據(jù)統(tǒng)計圖回答下列問題:

1)若去A地的車票占全部車票的20%,求去C地的車票數(shù),并補全條形統(tǒng)計圖(圖1);

2)請從小到大寫出這四類車票數(shù)的數(shù)字,并直接寫出這四個數(shù)據(jù)的平均數(shù)和中位數(shù);

3)如圖2,甲轉(zhuǎn)盤被分成四等份且標有數(shù)字1、23、4,乙轉(zhuǎn)盤分成三等份且標有數(shù)字7、89,具體規(guī)定是:同時轉(zhuǎn)動兩個轉(zhuǎn)盤,當指針指向的兩個數(shù)字之和是偶數(shù)時,李老師出去培訓,否則張老師出去培訓(指針指在線上重轉(zhuǎn)),試用列表法樹狀圖的方法分析這個規(guī)定對雙方是否公平.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1是實驗室中的一種擺動裝置,BC在地面上,支架ABC是底邊為BC的等腰直角三角形,擺動臂AD可繞點A旋轉(zhuǎn),擺動臂DM可繞點D旋轉(zhuǎn),AD30,DM10

1)在旋轉(zhuǎn)過程中,

①當A,DM三點在同一直線上時,求AM的長.

②當A,D,M三點為同一直角三角形的頂點時,求AM的長.

2)若擺動臂AD順時針旋轉(zhuǎn)90°,點D的位置由ABC外的點D1轉(zhuǎn)到其內(nèi)的點D2處,連結(jié)D1D2,如圖2,此時∠AD2C135°CD260,求BD2的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,APBD的邊BD上一點,以AB為直徑的PD于點C,過DDEPOPO延長線于點E,且有∠EDB=EPB.

1)求證:PB是圓O的切線.

2)若PB=6,DB=8,求的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知ABCDAB,AD的長是關(guān)于x的方程x2mx+40的兩個實數(shù)根.

1)當m為何值時,四邊形ABCD是菱形?

2)若AB的長為,那么ABCD的周長是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為落實美麗撫順的工作部署,市政府計劃對城區(qū)道路進行了改造,現(xiàn)安排甲、乙兩個工程隊完成.已知甲隊的工作效率是乙隊工作效率的倍,甲隊改造360米的道路比乙隊改造同樣長的道路少用3天.

(1)甲、乙兩工程隊每天能改造道路的長度分別是多少米?

(2)若甲隊工作一天需付費用7萬元,乙隊工作一天需付費用5萬元,如需改造的道路全長1200米,改造總費用不超過145萬元,至少安排甲隊工作多少天?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y1=﹣x+5與反比例函數(shù)y2的圖象交于A(1,m)、B(4,n)兩點.

(1)AB兩點的坐標和反比例函數(shù)的解析式;

(2)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,MBC上一點,FAM的中點,EF⊥AM,垂足為F,交AD的延長線于點E,交DC于點N

1)求證:△ABM∽△EFA

2)若AB=12,BM=5,求DE的長.

查看答案和解析>>

同步練習冊答案