【題目】如圖,已知某小區(qū)的兩幢10層住宅樓間的距離為AC="30" m,由地面向上依次為第1層、第2層、、第10層,每層高度為3 m.假設(shè)某一時(shí)刻甲樓在乙樓側(cè)面的影長(zhǎng)EC=h,太陽(yáng)光線與水平線的夾角為α

(1) 用含α的式子表示h(不必指出α的取值范圍);

(2) 當(dāng)α30°時(shí),甲樓樓頂B點(diǎn)的影子落在乙樓的第幾層?若α每小時(shí)增加15°,從此時(shí)起幾小時(shí)后甲樓的影子剛好不影響乙樓采光 ?

【答案】(1) h=30-30tana. (2) 第五層, 1小時(shí)后

【解析】

1)過(guò)點(diǎn)EEF⊥ABF可得矩形ACEF,可得BF=3×10-h=30-h;進(jìn)而解Rt△BEF,

可得h=30-30tanα

2)根據(jù)題意,分析可得當(dāng)B點(diǎn)的影子落在C處時(shí),甲樓的影子剛好不影響乙樓采光;分析△ABC可得:=1(小時(shí)),可得答案.

解:(1)過(guò)點(diǎn)EEFABF,由題意,四邊形ACEF為矩形.

EF=AC=30,AF=CE=h,∠BEF=α

BF=3×10-h=30-h

又在RtBEF中,,

,即30-h=30tanα∴h=30-30tanα

2)當(dāng)α=30°時(shí),

∵12.7÷34.2,
∴B點(diǎn)的影子落在乙樓的第五層.
當(dāng)B點(diǎn)的影子落在C處時(shí),甲樓的影子剛好不影響乙樓采光.
此時(shí),由AB=AC=30,知ABC是等腰直角三角形,
∴∠ACB=45°,

(小時(shí)).

故經(jīng)過(guò)1小時(shí)后,甲樓的影子剛好不影響乙樓采光.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC的邊AB是⊙O的直徑,點(diǎn)C在⊙O上,已知AC6cm,BC8cm,點(diǎn)P、Q分別在邊ABBC上,且點(diǎn)P不與點(diǎn)AB重合,BQkAPk0),聯(lián)接PCPQ

1)求⊙O的半徑長(zhǎng);

2)當(dāng)k2時(shí),設(shè)APx,CPQ的面積為y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域;

3)如果CPQABC相似,且∠ACB=∠CPQ,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)P為⊙O內(nèi)一點(diǎn),A、BC、D為圓上順次四個(gè)點(diǎn),連接ABCD,OMAB于點(diǎn)M,連接MP并延長(zhǎng)交CD于點(diǎn)N,連接PAPB、PCPD

1)如圖1,若A、P、C三點(diǎn)共線,B、P、D三點(diǎn)共線,且ACBD,求證:PNCD;

2)如圖2,若PAPD,PAPDPCPB,PCPB,求證:PNCD;

3)如圖3,在(2)的條件下,PA10,PC6,∠APB60°,求MN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】植樹(shù)節(jié)期間,某校360名學(xué)生參加植樹(shù)活動(dòng),要求每人植樹(shù)36棵,活動(dòng)結(jié)束后隨機(jī)抽查了20名學(xué)生每人的植樹(shù)量,并分為四種類型,A3;B4棵;C5棵;D6棵.根據(jù)各類型對(duì)應(yīng)的人數(shù)繪制了扇形統(tǒng)計(jì)圖(如圖1)和尚未完成的條形統(tǒng)計(jì)圖(如圖2).請(qǐng)解答下列問(wèn)題:

(1)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(2)20名學(xué)生每人植樹(shù)量的眾數(shù)為_(kāi)_______棵,中位數(shù)為_(kāi)_______棵;

(3)在求這20名學(xué)生每人植樹(shù)量的平均數(shù)時(shí),小宇是這樣分析的:

第一步:求平均數(shù)的公式是;

第二步:在該問(wèn)題中,n=4,,,,;

第三步:

①小宇的分析是不正確的,他錯(cuò)在第幾步?

請(qǐng)你幫他計(jì)算出正確的平均數(shù),并估計(jì)這360名學(xué)生共植樹(shù)多少棵.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若一條直線把一個(gè)平面圖形分成面積相等的兩部分,那么這條直線叫做該平面圖形的“和諧線”,其“和諧線”被該平面圖形截得的線段叫做該平面圖形的“和諧線段”(例如圓的直徑就是圓的“和諧線段”)

問(wèn)題探究:

1)如圖,已知△ABC中,AB6,BC8,∠B90°,請(qǐng)寫出△ABC的兩條“和諧線段”的長(zhǎng).

2)如圖,平行四邊形ABCD中,AB6,BC8,∠B60°,請(qǐng)直接寫出該平行四邊形ABCD的“和諧線段”長(zhǎng)的最大值和最小值;

問(wèn)題解決

3)如圖,四邊形ABCD是某市規(guī)劃中的商業(yè)區(qū)示意圖,其中AB2,CD10,∠A135°,∠B90°,tanC,現(xiàn)計(jì)劃在商業(yè)區(qū)內(nèi)修一條筆直的單行道MN(小道的寬度不計(jì)),入口MBC上,出口NCD上,使得MN為四邊形ABCD“和諧線段”,在道路一側(cè)△MNC區(qū)域規(guī)劃為公園,為了美觀要求△MNC是以CM為腰的等腰三角形,請(qǐng)通過(guò)計(jì)算說(shuō)明設(shè)計(jì)師的想法能否實(shí)現(xiàn)?若可以,請(qǐng)確定點(diǎn)M的位置(即求CM的長(zhǎng)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A是雙曲線在第一象限上的一動(dòng)點(diǎn),連接AO并延長(zhǎng)交另一分支于點(diǎn)B,以AB為斜邊作等腰Rt△ABC,點(diǎn)C在第二象限,隨著點(diǎn)A的運(yùn)動(dòng),點(diǎn)C的位置也不斷的變化,但始終在一函數(shù)圖象上運(yùn)動(dòng),則這個(gè)函數(shù)的解析式為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線軸交于、兩點(diǎn),與軸交于點(diǎn),其對(duì)稱軸為直線

1)直接寫出拋物線的解析式;

2)把線段沿軸向右平移,設(shè)平移后、的對(duì)應(yīng)點(diǎn)分別為,當(dāng)落在拋物線上時(shí),求、的坐標(biāo);

3)除(2)中的平行四邊形外,在軸和拋物線上是否還分別存在點(diǎn),使得以、、為頂點(diǎn)的四邊形為平行四邊形?若存在,求出的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線軸交于點(diǎn),與軸交于點(diǎn),點(diǎn)、是反比例函數(shù)圖象上的點(diǎn),于點(diǎn)

1)求直線的函數(shù)解析式及反比例函數(shù)的解析式;

2)若、的面積分別為,,直接寫出,,的一個(gè)數(shù)量關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一副三角尺(在中,,,在中,,)如圖擺放,點(diǎn)的中點(diǎn),于點(diǎn),經(jīng)過(guò)點(diǎn),將繞點(diǎn)順時(shí)針?lè)较蛐D(zhuǎn)),于點(diǎn)于點(diǎn),則的值為(

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案