【題目】直接寫(xiě)出結(jié)果:
(1)6+(﹣9)=_____.
(2)﹣5﹣15=____.
(3)12÷(﹣3)=____.
(4)=______.
(5)=______.
(6)(﹣2)2018+(﹣2)2017=______.
(7)﹣3a2+2a2=_____.
(8)﹣2(x﹣1)=_____.
【答案】(1)-3;(2)-20;(3)-4;(4)5;(5);(6)22017;(7)﹣a2;(8)﹣2x+2.
【解析】
(1)原式利用加法法則計(jì)算即可求出值;
(2)原式利用減法法則計(jì)算即可求出值;
(3)原式利用除法法則計(jì)算即可求出值;
(4)原式先計(jì)算乘方運(yùn)算,再計(jì)算乘法運(yùn)算即可求出值;
(5)原式從左到右依次計(jì)算即可求出值;
(6)原式先計(jì)算乘方運(yùn)算,再計(jì)算加法運(yùn)算即可求出值;
(7)原式合并同類項(xiàng)即可得到結(jié)果;
(8)原式去括號(hào)合并即可得到結(jié)果.
解:(1)原式=﹣(9﹣6)=﹣3;
(2)原式=﹣20;
(3)原式=﹣4;
(4)原式=9×=5;
(5)原式=﹣1××=;
(6)原式=﹣22017×(﹣2+1)=22017;
(7)原式=﹣a2;
(8)原式=﹣2x+2.
故答案為:(1)﹣3;(2)﹣20;(3)﹣4;(4)5;(5);(6)22017;(7)﹣a2;(8)﹣2x+2
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,點(diǎn)E在邊AD上,將此矩形沿CE折疊,點(diǎn)D落在點(diǎn)F處,連接BF,B、F、E三點(diǎn)恰好在一直線上.
(1)求證:△BEC為等腰三角形;(2)若AB=2,∠ABE=45°,求矩形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司購(gòu)買(mǎi)了一批、型芯片,其中型芯片的單價(jià)比型芯片的單價(jià)少9元,已知該公司用3120元購(gòu)買(mǎi)型芯片的條數(shù)與用4200元購(gòu)買(mǎi)型芯片的條數(shù)相等.
(1)求該公司購(gòu)買(mǎi)的、型芯片的單價(jià)各是多少元?
(2)若兩種芯片共購(gòu)買(mǎi)了200條,且購(gòu)買(mǎi)的總費(fèi)用為6280元,求購(gòu)買(mǎi)了多少條型芯片?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)一個(gè)兩位數(shù)A,十位數(shù)字為a,個(gè)位數(shù)字為b,交換a和b的位置,得到一個(gè)新的兩位數(shù)B,則A+B一定能被______整除,A-B一定能被______整除;
(2)一個(gè)三位數(shù)M,百位數(shù)字為a,十位數(shù)字為b,個(gè)位數(shù)字為c(a,b,c均為1至9的整數(shù)),交換a和c的位置,得到一個(gè)新的三位數(shù)N.請(qǐng)用含a、b、c的式子分別表示數(shù)N與M-N;
(3) 若(2)中a比b大1,M比N大792,求M.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某社區(qū)超市第一次用6000元購(gòu)進(jìn)甲、乙兩種商品,其中乙商品的件數(shù)比甲商品件數(shù)的倍多15件,甲、乙兩種商品的進(jìn)價(jià)和售價(jià)如下表:(注:獲利=售價(jià)﹣進(jìn)價(jià))
甲 | 乙 | |
進(jìn)價(jià)(元/件) | 22 | 30 |
售價(jià)(元/件) | 29 | 40 |
(1)該超市購(gòu)進(jìn)甲、乙兩種商品各多少件?
(2)該超市將第一次購(gòu)進(jìn)的甲、乙兩種商品全部賣(mài)完后一共可獲得多少利潤(rùn)?
(3)該超市第二次以第一次的進(jìn)價(jià)又購(gòu)進(jìn)甲、乙兩種商品,其中甲商品的件數(shù)不變,乙商品的件數(shù)是第一次的3倍;甲商品按原價(jià)銷(xiāo)售,乙商品打折銷(xiāo)售,第二次兩種商品都銷(xiāo)售完以后獲得的總利潤(rùn)比第一次獲得的總利潤(rùn)多180元,求第二次乙商品是按原價(jià)打幾折銷(xiāo)售?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市自實(shí)施《生活垃圾分類和減量管理辦法》以來(lái),生活垃圾分類和減量工作取得了一定的成效,環(huán)保部門(mén)為了提高 宣傳實(shí)效,隨機(jī)抽樣調(diào)查了100戶居民8月的生活垃圾量,并繪制成不完整的扇形統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中的信息解答下列問(wèn)題
(1)請(qǐng)將條形統(tǒng)計(jì)圖22-(1)補(bǔ)充完整.
(2)在圖22-(2)的扇形統(tǒng)計(jì)圖中,求表示“有害垃圾C”所在扇形的圓心角的度數(shù).
(3)根據(jù)統(tǒng)計(jì),8月所抽查的居民產(chǎn)生的生活垃圾總量為2750kg,則其中為可回收垃圾約為多少kg?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(Ⅰ)已知|a+3|+(b﹣4)2=0,分別求式子a2+2ab+b2與(a+b)2的值;
(Ⅱ)比較(Ⅰ)中兩個(gè)式子的計(jì)算結(jié)果,你能大膽猜想:_____;
(Ⅲ)請(qǐng)你再舉一組a,b的值代入計(jì)算,驗(yàn)證你的猜想是否正確.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠計(jì)劃生產(chǎn)兩種產(chǎn)品共60件,需購(gòu)買(mǎi)甲、乙兩種材料.生產(chǎn)一件產(chǎn)品需甲種材料4千克;生產(chǎn)一件產(chǎn)品需甲、乙兩種材料各3千克.經(jīng)測(cè)算,購(gòu)買(mǎi)甲、乙兩種材料各1千克共需資金60元;購(gòu)買(mǎi)甲種材料2千克和乙種材料3千克共需資金155元.
(1)甲、乙兩種材料每千克分別是多少元?
(2)現(xiàn)工廠用于購(gòu)買(mǎi)甲、乙兩種材料的資金不超過(guò)9900元,且生產(chǎn)產(chǎn)品不少于38件,問(wèn)符合生產(chǎn)條件的生產(chǎn)方案有哪幾種?
(3)在(2)的條件下,若生產(chǎn)一件產(chǎn)品需加工費(fèi)40元,生產(chǎn)一件產(chǎn)品需加工費(fèi)50元,應(yīng)選擇哪種生產(chǎn)方案,使生產(chǎn)這60件產(chǎn)品的成本最低(成本=材料費(fèi)+加工費(fèi))?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了防止水土流失,某村開(kāi)展綠化荒山活動(dòng),計(jì)劃經(jīng)過(guò)若干年使本村綠化總面積新增360萬(wàn)平方米.自2014年初開(kāi)始實(shí)施后,實(shí)際每年綠化面積是原計(jì)劃的1.6倍,這樣可提前4年完成任務(wù).問(wèn)實(shí)際每年綠化面積多少萬(wàn)平方米?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com