【題目】ABCADE是有公共頂點(diǎn)的三角形,∠BAC=∠DAE90°,點(diǎn)P為射線BDCE的交點(diǎn).

(1) ①如圖1,∠ADE=∠ABC45°,求證:∠ABD=∠ACE

②如圖2,∠ADE=∠ABC30°,①中的結(jié)論是否成立?請(qǐng)說明理由.

(2)(1) ①的條件下,AB6AD4,若把ADE繞點(diǎn)A旋轉(zhuǎn),當(dāng)∠EAC90°時(shí),畫圖并求PB的長(zhǎng)度.

【答案】(1)見詳解

(2)結(jié)論仍成立,理由見詳解

(3)PB=.

【解析】

1)①依據(jù)等腰三角形的性質(zhì)得到AB=AC,AD=AE,依據(jù)同角的余角相等得到∠DAB=CAE,然后依據(jù)SAS可證明△ADB≌△AEC,最后,依據(jù)全等三角形的性質(zhì)可得到∠ABD=ACE;

②先判斷出△ADB∽△AEC,即可得出結(jié)論;

(2)分為點(diǎn)EAB上和點(diǎn)EAB的延長(zhǎng)線上兩種情況畫出圖形,然后再證明△PEB∽△AEC,最后依據(jù)相似三角形的性質(zhì)進(jìn)行證明即可.

解:(1)①∵∠BAC=∠DAE,∴∠BAD=∠CAE

又∵∠ADE=∠ABC45°,∴ADAE,ABAC

∴△BAD≌△CAE,∴∠ABD=∠ACE;

②∵∠BAC=∠DAE,∴∠BAD=∠CAE

∵∠ADE=∠ABC30°,∴,,

,

∴△BAD∽△CAE,

∴∠ABD=∠ACE

(2)作草圖如圖所示,分為兩種情況:

①當(dāng)點(diǎn)EAB上時(shí),

∵∠BAC=∠DAE,

又∵∠ADE=∠ABC45°,∴ADAE,ABAC

∴△BAD≌△CAE,

∴∠ABD=∠ACE

∴△AEC∽△BPE,∴

AB6,AD4

EB2,,

,解得

②當(dāng)點(diǎn)EAB延長(zhǎng)線上時(shí),

∵∠BAC=∠DAE,又∵∠ADE=∠ABC45°,

ADAE,ABAC,

∴△BAD≌△CAE

∴∠ABD=∠ACE;

∴△ABD∽△DPC,

,

AB6AD4,

DC2,,

,解得

綜上,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為積極響應(yīng)我市創(chuàng)建“全國(guó)衛(wèi)生城市”的號(hào)召,某校1500名學(xué)生參加了衛(wèi)生知識(shí)競(jìng)賽,成績(jī)記為A、B、C、D四等,從中隨機(jī)抽取了部分學(xué)生成績(jī)進(jìn)行統(tǒng)計(jì),繪制成如圖兩幅不完整的統(tǒng)計(jì)圖表,根據(jù)圖表信息,以下說法不正確的是( 。

A. D等所在扇形的圓心角為15°B. 樣本容量是200

C. 樣本中C等所占百分比是10%D. 估計(jì)全校學(xué)生成績(jī)?yōu)?/span>A等大約有900

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABCD中,過點(diǎn)DDEAB于點(diǎn)E,點(diǎn)FCD上,CF=AE,連接BF,AF

1)求證:四邊形BFDE是矩形;

2)若AF平分∠BAD,且AE=3,DE=4,求矩形BFDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若關(guān)于x的一元二次方程(x2)(x3=m有實(shí)數(shù)根x1,x2,且x1≠x2,有下列結(jié)論:

①x1=2,x2=3; ;

二次函數(shù)y=xx1)(xx2)+m的圖象與x軸交點(diǎn)的坐標(biāo)為(2,0)和(3,0).

其中,正確結(jié)論的個(gè)數(shù)是( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在創(chuàng)客教育理念的指引下,國(guó)內(nèi)很多學(xué)校都紛紛建立創(chuàng)客實(shí)踐室及創(chuàng)客空間,致力于從小培養(yǎng)孩子的創(chuàng)新精神和創(chuàng)造能力,鄭州市某校開設(shè)了“3D”打印、數(shù)學(xué)編程、智能機(jī)器人、陶藝制作四門創(chuàng)客課程,為了解學(xué)生對(duì)這四門創(chuàng)客課程的喜愛情況,數(shù)學(xué)興趣小組對(duì)全校學(xué)生進(jìn)行了隨機(jī)問卷調(diào)查(問卷調(diào)查表如表所示),將調(diào)查結(jié)果整理后繪制成圖1、圖2兩幅均不完整的統(tǒng)計(jì)圖表.

1

創(chuàng)客課程

頻數(shù)

頻率

A

36

0.45

B

0.25

C

16

b

D

8

合計(jì)

a

1

最受歡理的創(chuàng)客課程詞查問卷

你好!這是一份關(guān)于你喜歡的創(chuàng)客深程問卷調(diào)查表,請(qǐng)你在表格中選擇一個(gè)(只能選擇一個(gè))你最喜歡的課程選項(xiàng)在其后空格內(nèi)打“√“,非常感謝你的合作.

選項(xiàng)

創(chuàng)客課程

A

“3D”打印

B

數(shù)學(xué)編程

C

智能機(jī)器人

D

陶藝制作

請(qǐng)根據(jù)圖表中提供的值息回答下列問題:

1)統(tǒng)計(jì)表中的a   b   ;

2“D”對(duì)應(yīng)扇形的圓心角為   

3)根據(jù)調(diào)查結(jié)果,請(qǐng)你估計(jì)該校2000名學(xué)生中最喜歡數(shù)學(xué)編程創(chuàng)客課程的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問題:已知α、β均為銳角,tanα=,tanβ=,求α+β的度數(shù).

探究:(1)用6個(gè)小正方形構(gòu)造如圖所示的網(wǎng)格圖(每個(gè)小正方形的邊長(zhǎng)均為1),請(qǐng)借助這個(gè)網(wǎng)格圖求出α+β的度數(shù);

延伸:(2)設(shè)經(jīng)過圖中M、P、H三點(diǎn)的圓弧與AH交于R,求的弧長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知,By軸上的動(dòng)點(diǎn),以AB為邊構(gòu)造,使點(diǎn)Cx軸上,BC的中點(diǎn),則PM的最小值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市對(duì)今年元旦期間銷售A、BC三種品牌的綠色雞蛋情況進(jìn)行了統(tǒng)計(jì),并繪制如圖所示的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖.根據(jù)圖中信息解答下列問題:

1)該超市元旦期間共銷售   個(gè)綠色雞蛋,A品牌綠色雞蛋在扇形統(tǒng)計(jì)圖中所對(duì)應(yīng)的扇形圓心角是   度;

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)如果該超市的另一分店在元旦期間共銷售這三種品牌的綠色雞蛋1500個(gè),請(qǐng)你估計(jì)這個(gè)分店銷售的B種品牌的綠色雞蛋的個(gè)數(shù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,已知點(diǎn)A在反比例函數(shù)x0)的圖像上,點(diǎn)B在經(jīng)過點(diǎn)(-2,1)的反比例函數(shù)x0)的圖像上,連結(jié)OA,OB,AB.

1)求k的值;

2)若∠AOB90°,求∠OAB的度數(shù);

3)將反比例函數(shù)x0)的圖像繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn)45°得到曲線l,過點(diǎn)E ,F的直線與曲線l相交于點(diǎn)M,N,如圖②所示,求△OMN的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案