分析 (1)先根據(jù)角平分線定義計(jì)算出∠BOD=$\frac{1}{2}$∠BOC=40°,然后利用鄰補(bǔ)角的定義可計(jì)算出∠AOD的度數(shù);
(2)先根據(jù)角平分線定義計(jì)算出∠DOC=$\frac{1}{2}$∠BOC=40°,再利用鄰補(bǔ)角的定義得到∠AOC=180°-∠BOC=100°,則∠COE=$\frac{1}{2}$∠AOC=50°,所以∠DOC+∠COE=90°;
(3)若∠BOC=60°,與(2)的計(jì)算方法一樣,可得∠DOC+∠COE=90°.
解答 解:(1)∵0D平分∠BOC,
∴∠BOD=$\frac{1}{2}$∠BOC=$\frac{1}{2}×$80°=40°,
∵∠AOB=180°,
∴∠AOD=180°-40°=140°;
(2)∠DOC和∠COE互余.理由如下:
∵0D平分∠BOC,
∴∠DOC=$\frac{1}{2}$∠BOC=$\frac{1}{2}×$80°=40°,
而∠AOC=180°-∠BOC=180°-80°=100°,
∵0E平分∠AOC,
∴∠COE=$\frac{1}{2}$∠AOC=50°,
∴∠DOC+∠COE=50°+40°=90°;
(3)若∠BOC=60°,其他條件不變,(2)中的結(jié)論還成立.理由如下:
∵0D平分∠BOC,
∴∠DOC=$\frac{1}{2}$∠BOC=$\frac{1}{2}×$60°=30°,
而∠AOC=180°-∠BOC=180°-60°=120°,
∵0E平分∠AOC,
∴∠COE=$\frac{1}{2}$∠AOC=60°,
∴∠DOC+∠COE=30°+60°=90°.
點(diǎn)評 本題考查了角平分線的定義:從一個(gè)角的頂點(diǎn)出發(fā),把這個(gè)角分成相等的兩個(gè)角的射線叫做這個(gè)角的平分線.性質(zhì):若OC是∠AOB的平分線則∠AOC=∠BOC=$\frac{1}{2}$∠AOB或∠AOB=2∠AOC=2∠BOC.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 2ax2與3x2 | B. | -1和3 | C. | 2xy2和-y2x | D. | 8xy和-8xy |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com