【題目】如圖1,四邊形的對角線相交于點,,,,.
(1)填空:與的數(shù)量關系為 ;
(2)求的值;
(3)將沿翻折,得到(如圖2),連接,與相交于點.若,求的長.
【答案】(1)∠BAD+∠ACB=180°;(2);(3)1.
【解析】
試題分析:(1)在△ABD中,根據(jù)三角形的內角和定理即可得出結論:∠BAD+∠ACB=180°;
(2)如圖1中,作DE∥AB交AC于E.由△OAB≌△OED,可得AB=DE,OA=OE,設AB=DE=CE=CE=x,OA=OE=y,由△EAD∽△ABC,推出,可得,可得4y2+2xy﹣x2=0,即,求出的值即可解決問題;
(3)如圖2中,作DE∥AB交AC于E.想辦法證明△PA′D∽△PBC,可得,可得,即,由此即可解決問題;
試題解析:(1)如圖1中,
在△ABD中,∵∠BAD+∠ABD+∠ADB=180°,∠ABD+∠ADB=∠ACB,
∴∠BAD+∠ACB=180°,故答案為∠BAD+∠ACB=180°.
(2)如圖1中,作DE∥AB交AC于E.
∴∠DEA=∠BAE,∠OBA=∠ODE,
∵OB=OD,∴△OAB≌△OED,
∴AB=DE,OA=OE,設AB=DE=CE=CE=x,OA=OE=y,
∵∠EDA+∠DAB=180°,∠BAD+∠ACB=180°,
∴∠EDA=∠ACB,∵∠DEA=∠CAB,∴△EAD∽△ABC,
∴,∴,
∴4y2+2xy﹣x2=0,∴,
∴(負根已經舍棄),∴.
(3)如圖2中,作DE∥AB交AC于E.
由(1)可知,DE=CE,∠DCA=∠DCA′,∴∠EDC=∠ECD=∠DCA′,
∴DE∥CA′∥AB,∴∠ABC+∠A′CB=180°,
∵△EAD∽△ACB,∴∠DAE=∠ABC=∠DA′C,
∴∠DA′C+∠A′CB=180°,∴A′D∥BC,
∴△PA′D∽△PBC,
∴,
∴,即
∴PC=1.
科目:初中數(shù)學 來源: 題型:
【題目】中國人很早就開始使用負數(shù),曾在一部中國古代數(shù)學著作中首次正式引入負數(shù)及其加減法運算法則,并給出名為“正負術”的算法,這部著作采用按類分章的問題集的形式進行編排,它的出現(xiàn)標志著我國古代數(shù)學體系的正式確立.這部經典名著是( )
A.《海島算經》B.《九章算術》
C.《孫子算經》D.《周髀算經》
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,∠ABD、∠CDB的平分線BE、DF分別交邊AD、BC于點E、F.
(1)求證:四邊形BEDF是平行四邊形;
(2)當∠ABE為多少度時,四邊形BEDF是菱形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店在2014年至2016年期間銷售一種禮盒.2014年,該商店用3500元購進了這種禮盒并且全部售完;2016年,這種禮盒的進價比2014年下降了11元/盒,該商店用2400元購進了與2014年相同數(shù)量的禮盒也全部售完,禮盒的售價均為60元/盒.
(1)2014年這種禮盒的進價是多少元/盒?
(2)若該商店每年銷售這種禮盒所獲利潤的年增長率相同,問年增長率是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商品的原價為100元,如果經過兩次降價,且每次降價的百分率都是m,那么該商品現(xiàn)在的價格是_____元(結果用含m的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠ABC=∠ACB,點D在BC所在的直線上,點E在射線AC上,且AD=AE,連接DE.
(1)如圖①,若∠B=∠C=35°,∠BAD=80°,求∠CDE的度數(shù);
(2)如圖②,若∠ABC=∠ACB=75°,∠CDE=18°,求∠BAD的度數(shù);
(3)當點D在直線BC上(不與點B、C重合)運動時,試探究∠BAD與∠CDE的數(shù)量關系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com