【題目】小明將如圖兩水平線l1、l2的其中一條當(dāng)成x軸,且向右為正方向;兩條直線l3、l4的其中一條當(dāng)成y軸,且向上為正方向,并在此坐標(biāo)平面中畫出二次函數(shù)yax22a2x+1的圖象,則( 。

A.l1x軸,l3yB.l2x軸,l3y

C.l1x軸,l4yD.l2x軸,l4y

【答案】D

【解析】

根據(jù)拋物線的開口向下,可得a0,求出對稱軸為:直線x=a,則可確定l4y軸,再根據(jù)圖象與y軸交點(diǎn),可得出l2x軸,即可得出答案.

解:∵拋物線的開口向下,

a0

yax22a2x+1,

∴對稱軸為:直線x=a<0

x=0,則y=1,

∴拋物線與y軸的正半軸相交,

l2x軸,l4y軸.

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,矩形ABCD中,E是AD的中點(diǎn),以點(diǎn)E直角頂點(diǎn)的直角三角形EFG的兩邊EF,EG分別過點(diǎn)B,C,∠F=30°.

(1)求證:BE=CE

(2)將△EFG繞點(diǎn)E按順時(shí)針方向旋轉(zhuǎn),當(dāng)旋轉(zhuǎn)到EF與AD重合時(shí)停止轉(zhuǎn)動(dòng).若EF,EG分別與AB,BC相交于點(diǎn)M,N.(如圖2)

①求證:△BEM≌△CEN;

②若AB=2,求△BMN面積的最大值;

③當(dāng)旋轉(zhuǎn)停止時(shí),點(diǎn)B恰好在FG上(如圖3),求sin∠EBG的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y=-2x+4與x軸、y軸分別交于點(diǎn)A、C,以O(shè)A、OC為邊在第一象限內(nèi)作長方形OABC

(1)求點(diǎn)A、C的坐標(biāo);

(2)將ABC對折,使得點(diǎn)A的與點(diǎn)C重合,折痕交AB于點(diǎn)D,求直線CD的解析式(圖);

(3)在坐標(biāo)平面內(nèi),是否存在點(diǎn)P(除點(diǎn)B外),使得APC與ABC全等?若存在,請直接寫出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明家所在居民樓的對面有一座大廈AB,高為74米,為測量居民樓與大廈之間的距離,小明從自己家的窗戶C處測得大廈頂部A的仰角為37°,大廈底部B的俯角為48°

1)求∠ACB的度數(shù);

2)求小明家所在居民樓與大廈之間的距離.(參考數(shù)據(jù):sin37°≈cos37°≈,tan37°≈,sin48°≈,cos48°≈tan48°≈

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸于、兩點(diǎn),經(jīng)過點(diǎn),交軸于點(diǎn)

1)求拋物線的解析式及點(diǎn)的坐標(biāo);

2)求的面積;

3)若點(diǎn)在直線上,點(diǎn)在平面上,是否存在這樣的點(diǎn),使得以點(diǎn)為頂點(diǎn)的四邊形為菱形?若存在,請直接寫出點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2019 年某市豬肉售價(jià)逐月上漲,每千克豬肉的售價(jià)()與月份(,為整數(shù))之間滿足一次函數(shù)關(guān)系:,每千克豬肉的成本()與月份(,為整數(shù))之間滿足二次函數(shù)關(guān)系,且3月份每千克豬肉的成本全年最低,為元,月份成本為.

1)求之間的函數(shù)關(guān)系式;

2)設(shè)銷售每千克豬肉所獲得的利潤為 (),之間的函數(shù)關(guān)系式,哪個(gè)月份銷售每千克豬肉所獲得的利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)的圖象經(jīng)過點(diǎn),射線與反比例函數(shù)的圖象的另一個(gè)交點(diǎn)為,射線軸交于點(diǎn),軸交于點(diǎn)軸, 垂足為

求反比例函數(shù)的解析式;

的長

軸上是否存在點(diǎn),使得相似,若存在,請求出滿足條件點(diǎn)的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半徑為2,圓心角為60°,則圖中陰影部分的面積是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC,∠ABC90°ABBC2,現(xiàn)將RtABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°得到△AED,則圖中陰影部分的面積是__________

查看答案和解析>>

同步練習(xí)冊答案