【題目】如圖,點在雙曲線上,垂直軸,垂足為,點上,平行于軸交曲線于點,直線軸交于點,已知,點的坐標(biāo)為.

1)求該雙曲線的解析式;

2)求的面積.

【答案】1)雙曲線解析式為;(2)

【解析】

1)由題意可知點的坐標(biāo)為,而,得到,則點坐標(biāo)為,然后利用待定系數(shù)法確定雙曲線的解析式;

2)根據(jù)題意已知,利用待定系數(shù)法確定直線的解析式,得到點的坐標(biāo),然后利用三角形的面積公式進行計算即可.

解:(1的坐標(biāo)為,垂直軸,

,

,

點坐標(biāo)為

設(shè)雙曲線的解析式為,

代入得,,

所以雙曲線解析式為

2)設(shè)直線的解析式為,

平行于軸交曲線于點

雙曲線的解析式為,

代入,

解得,

線段的解析式為,

,得,

點的坐標(biāo)為,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角三角形ABC中,∠ACB=900,AB=10BC=6,在線段AB上取一點D,作DF⊥ABAC于點F.現(xiàn)將△ADF沿DF折疊,使點A落在線段DB上,對應(yīng)點記為A1;AD的中點E的對應(yīng)點記為E1.△E1FA1∽△E1BF,則AD= .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1是實驗室中的一種擺動裝置,BC在地面上,支架ABC是底邊為BC的等腰直角三角形,擺動臂AD可繞點A旋轉(zhuǎn),擺動臂DM可繞點D旋轉(zhuǎn),AD30DM10

1)在旋轉(zhuǎn)過程中,

①當(dāng)A,D,M三點在同一直線上時,求AM的長.

②當(dāng)A,D,M三點為同一直角三角形的頂點時,求AM的長.

2)若擺動臂AD順時針旋轉(zhuǎn)90°,點D的位置由ABC外的點D1轉(zhuǎn)到其內(nèi)的點D2處,連結(jié)D1D2,如圖2,此時∠AD2C135°,CD260,求BD2的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某店因為經(jīng)營不善欠下38000元的無息貸款的債務(wù),想轉(zhuǎn)行經(jīng)營服裝專賣店又缺少資金.“中國夢想秀”欄目組決定借給該店30000元資金,并約定利用經(jīng)營的利潤償還債務(wù)(所有債務(wù)均不計利息)已知該店代理的某品牌服裝的進價為每件40元,該品牌服裝日的售量y(件)與銷售價x(元/件)之間的關(guān)系可用圖中的一條折線(實線)來表示.

1)求日銷售量y(件)與銷售價x(元/件)之間的函數(shù)關(guān)系式;

2)當(dāng)銷售價為多少元時,該店的日銷售利潤最大;

3)該店每天支付工資和其它費用共250元,該店能否在一年內(nèi)還清所有債務(wù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著生活水平的提高,人們對飲水品質(zhì)的需求越來越高,某公司根據(jù)市場需求代理A,B兩種型號的凈水器,其中A型凈水器每臺的利潤為400元,B型凈水器每臺的利潤為500元.該公司計劃再一次性購進兩種型號的凈水器共100臺,其中B型凈水器的進貨量不超過A型凈水器的2倍,設(shè)購進A型凈水器x臺,這100臺凈水器的銷售總利潤為y元.

1)求y關(guān)于x的函數(shù)關(guān)系式;

2)該公司購進A型、B型凈水器各多少臺,才能使銷售總利潤最大,最大利潤是多少?

3)實際進貨時,廠家對A型凈水器出廠價下調(diào)a0a150)元,且限定公司最多購進A型凈水器60臺,若公司保持同種凈水器的售價不變,請你根據(jù)以上信息,設(shè)計出使這100臺凈水器銷售總利潤最大的進貨方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中ABC三個頂點的坐標(biāo)分別是點A(2,3)、點B(1,1)、點C(0,2)

1)作ABC關(guān)于C成中心對稱的A1B1C1;

2)將A1B1C1向右平移3個單位,作出平移后的A2B2C2;

3)在x軸上求作一點P,使PA1+PC1的值最小,并寫出點 P 的坐標(biāo).(不寫解答過程,直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bx+c的圖象交x軸于A(2,0)和點B,交y軸負半軸于點C,且OBOC.以下結(jié)論:①0:②acb1;③4a+c0;④b≠2.其中正確的個數(shù)有(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,已知AB=4,P為線段AB上的一個動點,分別以APPB為邊在AB的同側(cè)作菱形APCD和菱形PBFE,點P,CE在一條直線上,∠DAP=60°M,N分別是對角線AC,BE的中點.當(dāng)點P在線段AB上移動時,點M,N之間的距離最短為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在x軸正半軸上依次截取OA1A1A2A2AAn1Ann為正整數(shù)),過點A1、A2、A3、…、An分別作x軸的垂線,與反比例函數(shù)yx0)交于點P1、P2、P3、…、Pn,連接P1P2、P2P3、…、Pn1Pn,過點P2、P3、…、Pn分別向P1A1、P2A2、…、Pn1An1作垂線段,構(gòu)成的一系列直角三角形(見圖中陰影部分)的面積和是__

查看答案和解析>>

同步練習(xí)冊答案