【題目】已知、三點(diǎn)在同一條直線上,平分,平分.

1)若,求;

2)若,求;

3是否隨的度數(shù)的變化而變化?如果不變,度數(shù)是多少?請(qǐng)你說(shuō)明理由,如果變化,請(qǐng)說(shuō)明如何變化.

【答案】190°;(290°;(3)∠DOE不隨∠AOC的度數(shù)的變化而變化,∠DOE=90°,理由見(jiàn)解析.

【解析】

1)由角平分線的定義求出∠COD的度數(shù),在由平角和角平分線的定義求出∠COE,即可求出∠DOE;

2)同(1)的方法可求出∠DOE;

3)設(shè)∠AOC=,然后依照(1)的方法進(jìn)行推導(dǎo)得出結(jié)論.

解:(1)∵OD平分∠AOC,∠AOC=40°,

∴∠COD=AOC=20°,∠BOC=

又∵OE平分∠BOC,

∴∠COE=BOC=70°

∴∠DOE=COD+COE=

2)∵OD平分∠AOC,∠AOC=60°,

∴∠COD=AOC=30°,∠BOC=

又∵OE平分∠BOC,

∴∠COE=BOC=60°

∴∠DOE=COD+COE=

3)∠DOE不隨∠AOC的度數(shù)的變化而變化,∠DOE=90°,理由如下:

設(shè)∠AOC=,

OD平分∠AOC

∴∠COD=AOC=,∠BOC=

又∵OE平分∠BOC

∴∠COE=BOC=

∴∠DOE=COD+COE=

故∠DOE不隨∠AOC的度數(shù)的變化而變化,始終等于90°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法錯(cuò)誤的有(

①有理數(shù)包括正有理數(shù)和負(fù)有理數(shù); ②絕對(duì)值等于它本身的數(shù)是非負(fù)數(shù);③若|b|=|5|,則b=-5 ; ④當(dāng)b=2時(shí),5|2b4|有最小值是5;⑤若互為相反數(shù),則;⑥是關(guān)于、的六次三項(xiàng)式.

A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形OABC的頂點(diǎn)A,C分別在軸和軸上,點(diǎn)B的坐標(biāo)為2,3。雙曲線的圖像經(jīng)過(guò)BC的中點(diǎn)D,且與AB交于點(diǎn)E,連接DE

1)求k的值及點(diǎn)E的坐標(biāo);

2)若點(diǎn)F是邊上一點(diǎn),且FBC∽△DEB,求直線FB的解析式

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正五邊形的邊長(zhǎng)為2,連接對(duì)角線AD,BE,CE,線段AD分別與BECE相交于點(diǎn)MN,給出下列結(jié)論:①∠AME=108°;②;③MN=;④.其中正確結(jié)論的序號(hào)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P是⊙O外一點(diǎn),PA切⊙O于點(diǎn)A,AB是⊙O的直徑,連接OP,過(guò)點(diǎn)BBCOP交⊙O于點(diǎn)C,連接ACOP于點(diǎn)D

1)求證:PC是⊙O的切線;

2)若PD=cmAC=8cm,求圖中陰影部分的面積;

3)在(2)的條件下,若點(diǎn)E是弧AB的中點(diǎn),連接CE,求CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲乙兩地相距180km,一列慢車以40km/h的速度從甲地勻速駛往乙地,慢車出發(fā)30分鐘后,一列快車以60km/h的速度從甲地勻速駛往乙地.兩車相繼到達(dá)終點(diǎn)乙地,再次過(guò)程中,兩車恰好相距10km的次數(shù)是(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在圓中,、是圓的半徑,點(diǎn)在劣弧弧上,,,,聯(lián)結(jié).

(1)如圖1,求證:平分;

(2)點(diǎn)在弦的延長(zhǎng)線上,聯(lián)結(jié),如果△是直角三角形,請(qǐng)你在如圖2中畫(huà)出

點(diǎn)的位置并求的長(zhǎng);

(3)如圖3,點(diǎn)在弦上,與點(diǎn)不重合,聯(lián)結(jié)與弦交于點(diǎn),設(shè)點(diǎn)與點(diǎn)

距離為,△的面積為,求的函數(shù)關(guān)系式,并寫(xiě)出自變量的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校舉辦了一次趣味數(shù)學(xué)黨賽,滿分100分,學(xué)生得分均為整數(shù),這次競(jìng)賽中,甲、乙兩組學(xué)生成績(jī)?nèi)缦拢▎挝唬悍郑?/span>

甲組:3060,60,60,6060,70,90,90100

乙組:50,60,60,60,70,70,7070,8090.

組別

平均分

中位數(shù)

方差

甲組

68

a

376

乙組

b

70

1)以生成績(jī)統(tǒng)計(jì)分析表中a=_________分,b=_________分.

2)小亮同學(xué)說(shuō):“這次賽我得了70分,在我們小組中屬中游略偏上!”雙察上面表格判斷,小亮可能是甲、乙哪個(gè)組的學(xué)生?并說(shuō)明理由。

(3)計(jì)算乙組成的方差,如果你是該校數(shù)學(xué)競(jìng)賽的教練員,現(xiàn)在需要你選一組同學(xué)代表學(xué)校參加復(fù)賽,你會(huì)進(jìn)擇哪一組?并說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知線段AB4,延長(zhǎng)AB到點(diǎn)C,使得AB2BC,反向延長(zhǎng)AB到點(diǎn)D,使AC2AD

1)求線段CD的長(zhǎng);

2)若QAB的中點(diǎn),P為線段CD上一點(diǎn),且BPBC,求線段PQ的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案