【題目】如圖,正方形網(wǎng)格中,每個小正方形的邊長均為1,每個小正方形的頂點叫格點.

1)在圖①中,線段AB的長度為 ;若在圖中畫出以C為直角頂點的Rt△ABC,使點C在格點上,請在圖中畫出所有點C

2)在圖②中,以格點為頂點,請先用無刻度的直尺畫正方形ABCD,使它的面積為13;再畫一條直線PQ(不與正方形對角線重合),使PQ恰好將正方形ABCD的面積二等分(保留作圖痕跡).

【答案】1,答案見解析;(2)答案見解析.

【解析】

1)直接利用勾股定理以及勾股定理的逆定理進而分析得出答案;

2)直接利用網(wǎng)格結(jié)合正方形的性質(zhì)分析得出答案.

解:(1)線段AB的長度為:;

C6個,如圖所示:

2)如圖所示:直線PQ只要過AC、BD交點O,且不與ACBD重合即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C、D是線段AB上兩點,M、N分別是線段ADBC的中點,下列結(jié)論:①若AD=BM,則AB=3BD;②若AC=BD,則AM=BN;③AC-BD=2MC-DN);④2MN=AB-CD.其中正確的結(jié)論是(

A.①②③B.③④C.①②④D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A、B都在數(shù)軸上,O為原點.

(1)B表示的數(shù)是_________________;

(2)若點B以每秒2個單位長度的速度沿數(shù)軸向右運動,則2秒后點B表示的數(shù)是________;

(3)若點A、B分別以每秒1個單位長度、3個單位長度的速度沿數(shù)軸向右運動,而點O不動,t秒后,A、B、O三個點中有一個點是另外兩個點為端點的線段的中點,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,正方形紙片ABCD的邊長為2,翻折∠B、∠D,使兩個直角的頂點重合于對角線BD上一點P、EFGH分別是折痕(如圖2).設(shè)AEx(0<x<2),給出下列判斷:①當(dāng)x=1時,點P是正方形ABCD的中心;②當(dāng)x時,EF+GHAC;③當(dāng)0<x<2時,六邊形AEFCHG面積的最大值是3;④當(dāng)0<x<2時,六邊形AEFCHG周長的值不變.其中正確的選項是( )

A. ①③ B. ①②④ C. ①③④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系xOy中,直線yx+b與直線yx交于點Am,1).與y軸交于點B

1)求m的值和點B的坐標(biāo);

2)若點Cy軸上,且△ABC的面積是1,請直接寫出點C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知數(shù)軸上點A表示的數(shù)為﹣7,點B表示的數(shù)為5,點C到點A,點B的距離相等,動點P從點A出發(fā),以每秒2個單位長度的速度沿數(shù)軸向右勻速運動,設(shè)運動的時間為tt>0)秒.

(1)點C表示的數(shù)是   ;

(2)求當(dāng)t等于多少秒時,點P到達點B處;

(3)點P表示的數(shù)是   (用含有t的代數(shù)式表示);

(4)求當(dāng)t等于多少秒時,PC之間的距離為2個單位長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)生的學(xué)業(yè)負擔(dān)過重會嚴重影響學(xué)生對待學(xué)習(xí)的態(tài)度.為此我市教育部門對部分學(xué)校的八年級學(xué)生對待學(xué)習(xí)的態(tài)度進行了一次抽樣調(diào)查(把學(xué)習(xí)態(tài)度分為三個層級,A級:對學(xué)習(xí)很感興趣;B級:對學(xué)習(xí)較感興趣;C級:對學(xué)習(xí)不感興趣),并將調(diào)查結(jié)果繪制成圖和圖的統(tǒng)計圖(不完整).請根據(jù)圖中提供的信息,解答下列問題:

1)此次抽樣調(diào)查中,共調(diào)查了 名學(xué)生;

2)將圖補充完整;

3)求出圖C級所占的圓心角的度數(shù);

4)根據(jù)抽樣調(diào)查結(jié)果,請你估計我市近8000名八年級學(xué)生中大約有多少名學(xué)生學(xué)習(xí)態(tài)度達標(biāo)(達標(biāo)包括A級和B級)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】垃圾分類越來越受到人們的關(guān)注,我市某中學(xué)對部分學(xué)生就垃圾分類知識的了解程度,采用隨機抽樣調(diào)查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.根據(jù)圖中信息回答下列問題:

(1)接受問卷調(diào)查的學(xué)生共有________人,條形統(tǒng)計圖中m的值為_______;

(2)扇形統(tǒng)計圖中了解很少部分所對應(yīng)扇形的圓心角的度數(shù)為________;

3)若該校學(xué)生總數(shù)為1200人,試估計該校學(xué)生中對垃圾分類知識達到非常了解基本了解程度的總?cè)藬?shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB,CD相交于點O,OA平分EOC

(1)若EOC=70°,求BOD的度數(shù);

(2)若EOCEOD=2:3,求BOD的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案