【題目】如圖,在平面直角坐標(biāo)系中,∠AOB90°,∠OAB30°,反比例函數(shù)y1的圖象經(jīng)過點A,反比例函數(shù)y2的圖象經(jīng)過點B,則下列關(guān)于mn的關(guān)系正確的是( 。

A.mnB.m=﹣nC.m=﹣nD.m=﹣3n

【答案】D

【解析】

過點BBEx軸于點E,過點AAFx軸于點F,設(shè)點B坐標(biāo)為(a, ),點A的坐標(biāo)為(b, ),證明△BOE∽△OAF,利用對應(yīng)邊成比例可求出mn的關(guān)系.

過點B作BE⊥x軸于點E,過點A作AF⊥x軸于點F,

∵∠OAB=30°,

∴OA=

設(shè)點B坐標(biāo)為(a, ),點A的坐標(biāo)為(b, ),

則OE=a,BE=,OF=b,AF=,

∵∠BOE+∠OBE=90°,∠AOF+∠BOE=90°,

∴∠OBE=∠AOF,

又∵∠BEO=∠OFA=90°,

∴△BOE∽△OAF,

,即 ,

解得:m ,n= ,

故可得:m=3n.

故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】12分)如圖,已知拋物線與直線AB相交于A﹣3,0),B0,3)兩點.

1)求這條拋物線的解析式;

2)設(shè)C是拋物線對稱軸上的一動點,求使∠CBA=90°的點C的坐標(biāo);

3)探究在拋物線上是否存在點P,使得△APB的面積等于3?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù) yax2+bx+c a0)的圖象如圖所示,則下列結(jié)論:abc0;b24ac0;③2a+b0ab+c0,其中正確的個數(shù)(  )

A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知矩形的周長為60

1)當(dāng)該矩形的面積為200時,求它的邊長;

2)請表示出這個矩形的面積與其一邊長的關(guān)系,并求出當(dāng)矩形面積取得最大值時,矩形的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】日下午,由名隊員組成的揚州市第七批支援湖北醫(yī)療隊,肩負(fù)著國家的重托和神圣職責(zé)使命啟程出征,其中小李、小王和三個同事共五人直接派往一線某醫(yī)院,根據(jù)該院人事安排需要先抽出一人去重癥監(jiān)護(hù),再派兩人到發(fā)熱門診,請你利用所學(xué)知識完成下列問題.

1)小李被派往重癥監(jiān)護(hù)的概率是  ;

2)若正好抽出她們的一同事去往重癥監(jiān)護(hù),請你利用畫樹狀圖或列表的方法,求出小李和小王同時被派往發(fā)熱門診的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了做好新冠肺炎疫情期間開學(xué)工作,我區(qū)某中學(xué)用藥熏消毒法對教室進(jìn)行消毒.已知一瓶藥物釋放過程中,室內(nèi)每立方米空氣中的含藥量y(毫克)與時間x(分鐘)成正比例;藥物釋放完畢后,yx成反比例,如圖所示.根據(jù)圖中提供的信息,解答下列問題:

1)寫出傾倒一瓶藥物后,從藥物釋放開始,yx之間的兩個函數(shù)關(guān)系式及相應(yīng)的自變量取值范圍;

2)據(jù)測定,當(dāng)空氣中每立方米的含藥量不低于8毫克時,消毒有效,那么傾倒一瓶藥物后,從藥物釋放開始,有效消毒時間是多少分鐘?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明與小亮玩游戲,如圖,兩組相同的紙牌,每組三張,牌面數(shù)字分別是3,4,5.他們將卡片背面朝上,分組充分洗勻后,從每組紙牌中各摸出一張,稱為一次游戲.當(dāng)摸出的兩張紙牌的牌面數(shù)字之和大于8,則小明獲勝;當(dāng)摸出的兩張紙牌的牌面數(shù)字之和小于8,則小亮獲勝.

1)請你用列表法或畫樹狀圖法求出小明獲勝的概率;

2)這個游戲公平嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2011貴州安順)如圖,在RtABC中,C=90°CA=CB=4,分別以A、BC為圓心,以AC為半徑畫弧,三條弧與邊AB所圍成的陰影部分的面積是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,對角線AC,BD交于點OAEBCCB延長線于點ECFAEAD延長線于點F

1)求證:四邊形AECF是矩形;

2)連接OE,若AE12,AD13,則線段OE的長度是   

查看答案和解析>>

同步練習(xí)冊答案