【題目】如圖,△ABC中,AB=AC,
(1)請你利用直尺和圓規(guī)完成如下操作:
①作△ABC的角平分線AD;
②作邊AB的垂直平分線EF,EF與AD相交于點P;
③連接PB,PC.
請你觀察圖形解答下列問題:
(2)線段PA,PB,PC之間的數(shù)量關系是 ;請說明理由.
(3)若∠ABC=70°,求∠BPC的度數(shù).
【答案】(1)見解析;(2)PA=PB=PC,理由見解析;(3)80°.
【解析】
(1)利用基本作圖作角平分線AD和AB的垂直平分線,它們相交于P點;
(2)根據(jù)線段的垂直平分線的性質可得:PA=PB=PC;
(3)根據(jù)等腰三角形的性質得:∠ABC=∠ACB=70°,由三角形的內角和得:∠BAC=180°-2×70°=40°,由角平分線定義得:∠BAD=∠CAD=20°,最后利用三角形外角的性質可得結論.
解:(1)如圖,AD、EF 、點P為所作;
(2)PA=PB=PC,理由:
∵AB=AC,AD平分∠BAC,
∴AD是BC的垂直平分線,
∴PB=PC,
∵EP是AB的垂直平分線,
∴PA=PB,
∴PA=PB=PC;
故答案為:PA=PB=PC;
(3)∵AB=AC,
∴∠ABC=∠ACB=70°,
∴∠BAC=180°-2×70°=40°,
∵AM平分∠BAC,
∴∠BAD=∠CAD=20°,
∵PA=PB=PC,
∴∠ABP=∠BAP=∠ACP=20°,
∴∠BPC=∠ABP+∠BAC+∠ACP=20°+40°+20°=80°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠A=50°,BD,CE是∠ABC,∠ACB的平分線,則∠BOC的度數(shù)為( 。
A.105°B.115°C.125°D.135°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A.擲一枚均勻的骰子,骰子停止轉動后,6點朝上是必然事件
B.甲、乙兩人在相同條件下各射擊10次,他們的成績平均數(shù)相同,方差分別是,,則甲的射擊成績較穩(wěn)定
C.“明天降雨的概率為”,表示明天有半天都在降雨
D.了解一批電視機的使用壽命,適合用普查的方式
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一張三角形紙片ABC,其中∠BAC=60°,BC=6,點D是BC邊上一動點,將BD,CD翻折使得B′,C′分別落在AB,AC邊上,(B與B′,C與C′分別對應),點D從點B運動至點C,△B′C′D面積的大小變化情況是( 。
A. 一直減小 B. 一直不變 C. 先減小后增大 D. 先增大后減小
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,四邊形ABCD是平行四邊形,AE∥CF,且分別交對角線BD于點E,F.
(1)求證:△AEB≌△CFD;
(2)連接AF,CE,若∠AFE=∠CFE,求證:四邊形AFCE是菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是⊙O的內接四邊形,AB=CD.
(1)如圖(1),求證:AD∥BC;
(2)如圖(2),點F是AC的中點,弦DG∥AB,交BC于點E,交AC于點M,求證:AE=2DF;
(3)在(2)的條件下,若DG平分∠ADC,GE=5,tan∠ADF=4,求⊙O的半徑。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點D在雙曲線上,AD垂直x軸,垂足為A,點C在AD上,CB平行于x軸交雙曲線于點B,直線AB與y軸交于點F,已知AC:AD=1:3,點C的坐標為(3,2).
(1)求該雙曲線的解析式;
(2)求△OFA的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線l:y=﹣x+4,在直線l上取點B1,過B1分別向x軸,y軸作垂線,交x軸于A1,交y軸于C1,使四邊形OA1B1C1為正方形;在直線l上取點B2,過B2分別向x軸,A1B1作垂線,交x軸于A2,交A1B1于C2,使四邊形A1A2B2C2為正方形;按此方法在直線l上順次取點B3,B4,…,Bn,依次作正方形A2A3B3C3,A3A4B4C4,…,An﹣1AnBnCn,則A3的坐標為___,B5的坐標為___.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,正方形ABCO的對角線BO在x 軸上,若正方形ABCO的邊長為,點B在x負半軸上,反比例函數(shù)的圖象經(jīng)過C點.
(1)求該反比例函數(shù)的解析式;
(2)當函數(shù)值>-2時,請直接寫出自變量x的取值范圍;
(3)若點P是反比例函數(shù)上的一點,且△PBO的面積恰好等于正方形ABCO的面積,求點P的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com