【題目】如圖,二次函數(shù)的圖象經(jīng)過原點(diǎn)和,與軸交于另一點(diǎn),且對稱軸是.
(1)求二次函數(shù)的表達(dá)式;
(2)若是上的一點(diǎn),作,交于點(diǎn),當(dāng)的面積最大時,求點(diǎn)的坐標(biāo);
(3)是軸上的點(diǎn),過作軸,與拋物線交于點(diǎn),過作軸于,是否存在點(diǎn),使以點(diǎn)、、為頂點(diǎn)的三角形與以點(diǎn)、、為頂點(diǎn)的三角形相似?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.
【答案】(1);(2)點(diǎn)的坐標(biāo)為;(3)點(diǎn)的坐標(biāo)為,,或.
【解析】
(1)設(shè)拋物線的解析式為,將原點(diǎn)和代入;列出方程組即可解答;
(2)求出點(diǎn)的坐標(biāo)為,設(shè)M,根據(jù),得
,列出相似比得到,再由,得到關(guān)于m的二次函數(shù)關(guān)系式,利用二次函數(shù)的性質(zhì)即可解答;
(3)設(shè)點(diǎn)的坐標(biāo)為,則點(diǎn)的坐標(biāo)為,分兩種情況進(jìn)行討論,①當(dāng)時,②當(dāng)時,分別列出相似比,得到關(guān)于n的方程即可求出點(diǎn)P的坐標(biāo).
解:(1)設(shè)拋物線的解析式為,將原點(diǎn)和代入得:
解得
所以
(2)由,得,
∴點(diǎn)的坐標(biāo)為,設(shè)點(diǎn)的坐標(biāo)為,點(diǎn)的縱坐標(biāo)為
由,得
∴
∴
∴
∴當(dāng)時,最大
所以點(diǎn)的坐標(biāo)為
(3)設(shè)點(diǎn)的坐標(biāo)為,則點(diǎn)的坐標(biāo)為
①當(dāng)時,則
∴
∴
解這個方程,得,(不合題意,舍去),
∴點(diǎn)的坐標(biāo)為或
②當(dāng)時,
∴
∴
解這個方程,得,(不合題意,舍去),
∴點(diǎn)的坐標(biāo)系為或
綜上所述,點(diǎn)的坐標(biāo)為,,或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程.
(1)求證:無論k取何實(shí)數(shù)值,方程總有實(shí)數(shù)根;
(2)若等腰△ABC的一邊長a=6,另兩邊長b、c恰好是這個方程的兩個根,求此三角形的三邊長?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC中,AB=6,D是AC的中點(diǎn),E是BC延長線上的一點(diǎn),CE=CD,DF⊥BE,垂足為F.
(1)求證:BF=EF;
(2)求△BDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,優(yōu)弧紙片所在的半徑為2,,點(diǎn)為優(yōu)弧上一點(diǎn)(點(diǎn)不與,重合),將圖形沿折疊,得到點(diǎn)的對稱點(diǎn).當(dāng)與相切時,則折痕的長______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店銷售某種商品,平均每天可售出20件,每件盈利40元,為了擴(kuò)大銷售增加盈利,該商店采取了降價措施,在每件盈利不少于25元的前提下,經(jīng)過一段時間銷售,發(fā)現(xiàn)銷售單價每降低1元,平均每天可多售出2件,當(dāng)每件商品降價多少元時,該商品每天的銷售利潤為1200元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1)已知矩形在平面直角坐標(biāo)系中,,,點(diǎn)的坐標(biāo)為,動點(diǎn)以每秒2個單位長度的速度沿運(yùn)動(點(diǎn)不與點(diǎn)、點(diǎn)重合),設(shè)運(yùn)動時間為秒.
(1)求經(jīng)過、、三點(diǎn)的拋物線解析式;
(2)點(diǎn)在(1)中的拋物線上,當(dāng)為中點(diǎn)時,若,求點(diǎn)的坐標(biāo);
(3)當(dāng)點(diǎn)在上運(yùn)動時,如圖(2)過點(diǎn)作,軸,垂足分別為、,設(shè)矩形與重疊部分面積為,求與的函數(shù)關(guān)系式,并求出的最大值;
(4)如圖(3)點(diǎn)在(1)中的拋物線上,是延長線上的一點(diǎn),且、兩點(diǎn)均在第三象限內(nèi),、是位于直線同側(cè)的不同兩點(diǎn),若點(diǎn)到軸的距離為,的面積為,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】嘗試探究:如圖,在中,,,E,F分別是BC,AC上的點(diǎn),且,則______;
類比延伸:如圖,若將圖中的繞點(diǎn)C順時針旋轉(zhuǎn),則在旋轉(zhuǎn)的過程中,值是否發(fā)生變化?請僅就圖的情形寫出推理過程;
拓展運(yùn)用:若,,在旋轉(zhuǎn)過程中,當(dāng)B,E,F三點(diǎn)在同一直線上時,請直接寫出此時線段AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知平面直角坐標(biāo)系xOy,正方形OABC,點(diǎn)B(4,4),過邊BC上動點(diǎn)P(不含端點(diǎn)C)的反比例函數(shù)的圖象交AB邊于Q點(diǎn),連結(jié)PQ,若把橫、縱坐標(biāo)均為整數(shù)的點(diǎn)叫做好點(diǎn),則反比例函數(shù)圖象與線段PQ圍成的圖形(含邊界)中好點(diǎn)個數(shù)為三個時,k的取值范圍為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為4×4的正方形網(wǎng)格圖,△ABC的頂點(diǎn)都在網(wǎng)格格點(diǎn)上(每個小正方形的頂點(diǎn)稱為格點(diǎn),頂點(diǎn)都在格點(diǎn)上的三角形稱為格點(diǎn)三角形).
(1)在圖1,圖2,圖3中分別畫一個與△ABC有一公共邊且與△ABC成軸對稱的三角形.
(2)在圖4中畫出一個滿足要求的格點(diǎn)△DEF,要求:△DEF與△ABC相似,且相似比的值為無理數(shù).(畫出一種即可)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com