【題目】嘗試探究:如圖,在中,,E,F分別是BC,AC上的點(diǎn),且,則______;

類比延伸:如圖,若將圖中的繞點(diǎn)C順時(shí)針旋轉(zhuǎn),則在旋轉(zhuǎn)的過(guò)程中,值是否發(fā)生變化?請(qǐng)僅就圖的情形寫出推理過(guò)程;

拓展運(yùn)用:若,在旋轉(zhuǎn)過(guò)程中,當(dāng)B,E,F三點(diǎn)在同一直線上時(shí),請(qǐng)直接寫出此時(shí)線段AF的長(zhǎng).

【答案】1;(2)不變化,理由見(jiàn)解析;(3AF的長(zhǎng)為3-3+

【解析】

1)根據(jù)直角三角形30°角的性質(zhì)即可解決問(wèn)題;
2)只要證明ACF∽△BCE,可得 ,由此即可解決問(wèn)題;
3)分兩種情形畫出圖形分別解決問(wèn)題即可;

1)如圖①中,

∵在ABC中,∠ABC=90°,∠A=30°,EFAB,
∴∠CFE=A=30°,
CF=EC,AC=BC,
AF=AC-CF=BC-EC=BC-EC=BE
=,
故答案為
2)不變化,
理由如下:如圖②中,

由(1)及旋轉(zhuǎn)的性質(zhì)知,∠CFE=CAB=30°
FCE=ACB=90°
RtCEF中,tanCEF==,
RtCBA中,tanABC= =
,
又∵∠FCE=ACB=90°,∠FCA+ACE=FCE,
ACE+BCE=ACB,
∴∠FCA=ECB
∴△ACF∽△BCE,
=
3)①如圖,由△ECB∽△FCA,可得:AFBE=CFEC=

設(shè)BE=a,則AF=a,
B,E,F共線,
∴∠BEC=AFC=120°
∵∠EFC=30°,
∴∠AFB=90°
RtABF中,AB=2BC=6AF=a,BF=EF+BE=4+a,
∴(a2+4+a2=62
a=-1+-1-(舍棄),
AF=a=3-
②如圖,當(dāng)E,BF共線時(shí),同法可證:AF=BE,∠AFB=90°

RtABF中,62=4-a2+a2,
解得a=1+1-(舍棄),
AF=a=3+
AF的長(zhǎng)為3-3+

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,BABC,以AB為直徑的⊙O分別交AC、BC于點(diǎn)D、EBC的延長(zhǎng)線于⊙O的切線AF交于點(diǎn)F

1)求證:∠ABC2CAF;

2)若AC2CEEB14,求CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,經(jīng)過(guò)原點(diǎn)的拋物線軸交于另一點(diǎn),在第一象限內(nèi)與直線交于點(diǎn)

1)求這條拋物線的解析式;

2)在第四象限內(nèi)的拋物線上有一點(diǎn),滿足以,,為頂點(diǎn)的三角形的面積為1,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)的圖象經(jīng)過(guò)原點(diǎn),與軸交于另一點(diǎn),且對(duì)稱軸是

1)求二次函數(shù)的表達(dá)式;

2)若上的一點(diǎn),作,交于點(diǎn),當(dāng)的面積最大時(shí),求點(diǎn)的坐標(biāo);

3軸上的點(diǎn),過(guò)軸,與拋物線交于點(diǎn),過(guò)軸于,是否存在點(diǎn),使以點(diǎn)、、為頂點(diǎn)的三角形與以點(diǎn)、為頂點(diǎn)的三角形相似?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,.將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)一定角度后得到,其中點(diǎn)的對(duì)應(yīng)點(diǎn)落在邊上,則圖中陰影部分的面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A11)在拋物線yx2+2m+1xn1

1)求m、n的關(guān)系式;

2)若該拋物線的頂點(diǎn)在x軸上,求出它的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】201912月以來(lái),湖北省武漢市部分醫(yī)院陸續(xù)發(fā)現(xiàn)不明原因肺炎病例,現(xiàn)已證實(shí)該肺炎為一種新型冠狀病毒感染的肺炎,其傳染性較強(qiáng).為了有效地避免交叉感染,需要采取以下防護(hù)措施:①戴口罩;②勤洗手;③少出門;④重隔離;⑤捂口鼻;⑥謹(jǐn)慎吃.某公司為了解員工對(duì)防護(hù)措施的了解程度(包括不了解、了解很少、基本了解和很了解),通過(guò)網(wǎng)上問(wèn)卷調(diào)查的方式進(jìn)行了隨機(jī)抽樣調(diào)查(每名員工必須且只能選擇一項(xiàng)),并將調(diào)查結(jié)果繪制成如下兩幅統(tǒng)計(jì)圖.

請(qǐng)你根據(jù)上面的信息,解答下列問(wèn)題

1)本次共調(diào)查了_______名員工,條形統(tǒng)計(jì)圖中________;

2)若該公司共有員工1000名,請(qǐng)你估計(jì)不了解防護(hù)措施的人數(shù);

3)在調(diào)查中,發(fā)現(xiàn)有4名員工對(duì)防護(hù)措施很了解,其中有3名男員工、1名女員工.若準(zhǔn)備從他們中隨機(jī)抽取2名,讓其在公司群內(nèi)普及防護(hù)措施,求恰好抽中一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,C=90°,BAC的平分線交BC于點(diǎn)D,DEAD,交AB于點(diǎn)E,AE為O的直徑

(1)判斷BC與O的位置關(guān)系,并證明你的結(jié)論;

(2)求證:ABD∽△DBE;

(3)若cosB=,AE=4,求CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AB為直徑作半圓⊙O,交BC于點(diǎn)D,連接AD,過(guò)點(diǎn)DDEAC,垂足為點(diǎn)E,交AB的延長(zhǎng)線于點(diǎn)F

1)求證:EF是⊙O的切線;

2)如果⊙O的半徑為5,cosDAB=,求BF的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案