【題目】如圖,已知⊙O 的直徑 AB 垂直弦 CD 于點(diǎn) E,連接 CO 并延長(zhǎng)交 AD于點(diǎn) F,且 CF⊥AD
(1)求證:點(diǎn) E 是 OB 的中點(diǎn);
(2)若 AB=12,求 CD 的長(zhǎng).
【答案】(1)證明見解析(2)6
【解析】
(1)如圖,連接AC.想辦法證明△ACD是等邊三角形,推出∠OCE=30°即可解決問題;
(2)根據(jù)垂徑定理CD=2EC,求出EC即可解決問題;
(1)證明:如圖,連接 AC.
∵AB⊥CD 于點(diǎn) E,
∴CE=DE,
在△ACE 和△ADE 中,
,
∴△ACE≌△ADE(SAS),
∴AC=AD,
同理:CA=CD,
∴△ACD 是等邊三角形,
∴∠OCE=30°,
∴OE= OC
而 OB=OC,
∴OE= OB.
故 E 是 OB 的中點(diǎn).
(2)解:∵AB=12,
∴OC=6,
∴OE= OC=3,
在 Rt△OCE 中,
CE= = =3,
∴CD=2CE=6 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)圖象與軸、軸交于點(diǎn).
(1)判斷點(diǎn)是否在該函數(shù)的圖象上?
(2)求點(diǎn)的坐標(biāo);
(3)在直線上是否存在一點(diǎn),使得的面積為?若存在,求出所有滿足點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明用的練習(xí)本可在甲,乙兩個(gè)商店買到,已知兩個(gè)商店的標(biāo)價(jià)都是每本1元.但甲商店的優(yōu)惠條件是:購(gòu)買10本以上,從第11本開始按標(biāo)價(jià)七折賣;乙商店的優(yōu)惠條件是:從第1本開始就按標(biāo)價(jià)的八五折賣.若小明購(gòu)買練習(xí)本數(shù)量為本,在甲商店購(gòu)買后的總費(fèi)用為元,在乙商店購(gòu)買后的總費(fèi)用為元.
(1)寫出與之間的函數(shù)關(guān)系式.
(2)小明要買20本練習(xí)本,到哪個(gè)商店購(gòu)買較省錢?
(3)小明現(xiàn)有24元,最多可買多少本練習(xí)本?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題7分)如圖,某校綜合實(shí)踐活動(dòng)小組的同學(xué)欲測(cè)量公園內(nèi)一棵樹DE的高度.他們?cè)谶@棵樹正前方一座樓亭前的臺(tái)階上A點(diǎn)處測(cè)得樹頂端D的仰角為30°,朝著這棵樹的方向走到臺(tái)階下的點(diǎn)C處,測(cè)得樹頂端D的仰角為60°.已知A點(diǎn)的高度AB為2米,臺(tái)階AC的坡度為 (即AB:BC=),且B、C、E三點(diǎn)在同一條盲線上。請(qǐng)根據(jù)以上殺件求出樹DE的高度(測(cè)傾器的高度忽略不計(jì)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,已知點(diǎn) A(﹣3,0),B(0,4),對(duì)△OAB 連續(xù)作旋轉(zhuǎn)變換,依次得到三角形(1),(2),(3),(4)…,則三角形(2019)的直角頂點(diǎn)的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=4cm,動(dòng)點(diǎn)E從點(diǎn)A出發(fā),以1cm/秒的速度沿折線AB—BC的路徑運(yùn)動(dòng),到點(diǎn)C停止運(yùn)動(dòng).過點(diǎn)E作 EF∥BD,EF與邊AD(或邊CD)交于點(diǎn)F,EF的長(zhǎng)度y(cm)與點(diǎn)E的運(yùn)動(dòng)時(shí)間x(秒)的函數(shù)圖象大致是
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,四邊形ABCD是平行四邊形,CE∥BD交AD的延長(zhǎng)線于點(diǎn)E,CE=AC.
(1)求證:四邊形ABCD是矩形;
(2)若AB=4,AD=3,求四邊形BCED的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC內(nèi)接于⊙O,AC是⊙O的直徑,D是的中點(diǎn).過點(diǎn)D作CB的垂線,分別交CB、CA延長(zhǎng)線于點(diǎn)F、E.
(1)判斷直線EF與⊙O的位置關(guān)系,并說明理由;
(2)若CF=6,∠ACB=60°,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點(diǎn)P是菱形ABCD的對(duì)角線BD上的一動(dòng)點(diǎn),連接CP并延長(zhǎng)交AD于E,交BA的延長(zhǎng)線于點(diǎn)F.
(1)求證:△APD≌△CPD;
(2)如圖2,當(dāng)菱形ABCD變?yōu)檎叫,?/span>PC=2,tan∠PFA=時(shí),求正方形ABCD的邊長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com