【題目】小明用的練習(xí)本可在甲,乙兩個商店買到,已知兩個商店的標(biāo)價(jià)都是每本1元.但甲商店的優(yōu)惠條件是:購買10本以上,從第11本開始按標(biāo)價(jià)七折賣;乙商店的優(yōu)惠條件是:從第1本開始就按標(biāo)價(jià)的八五折賣.若小明購買練習(xí)本數(shù)量為本,在甲商店購買后的總費(fèi)用為元,在乙商店購買后的總費(fèi)用為元.
(1)寫出與之間的函數(shù)關(guān)系式.
(2)小明要買20本練習(xí)本,到哪個商店購買較省錢?
(3)小明現(xiàn)有24元,最多可買多少本練習(xí)本?
【答案】(1),;(2)買20個練習(xí)本兩個商店的費(fèi)用一樣;(3)最多可以買30個練習(xí)本
【解析】
(1)根據(jù)總價(jià)=單價(jià)×數(shù)量就可以表示出y與x之間的關(guān)系式;
(2)根據(jù)(1)的解析式分別求出兩個商店的費(fèi)用即可;
(3)將y=24分別代入(1)的解析式,求出x的值就可以得出結(jié)論.
(1)由題意,得:
,
;
(2)買20本練習(xí)本,
甲商店的費(fèi)用為(元),
乙商店的費(fèi)用為(元).
所以買20個練習(xí)本兩個商店的費(fèi)用一樣;
(3)小明現(xiàn)有24元,即時(shí),
在甲商店購買的數(shù)量為:,
解得:(本),
在乙商店購買的數(shù)量為:,
解得:(本),
∵,
∴最多可以買30個練習(xí)本.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)C,E,F(xiàn),B在同一直線上,點(diǎn)A,D在BC異側(cè),AB∥CD,AE=DF,∠A=∠D.
(1)求證:AB=CD;
(2)若AB=CF,∠B=30°,求∠D的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,PB與⊙O相切于點(diǎn)B,連接PA交⊙O于點(diǎn)C,連接BC.
(1)求證:∠BAC=∠CBP;
(2)求證:PB2=PCPA;
(3)當(dāng)AC=6,CP=3時(shí),求sin∠PAB的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與探究
如圖,等腰直角中,,,現(xiàn)將該三角形放置在平面直角坐標(biāo)系中,點(diǎn)坐標(biāo)為,點(diǎn)坐標(biāo)為.
(1)過點(diǎn)作軸,求的長及點(diǎn)的坐標(biāo);
(2)連接,若為坐標(biāo)平面內(nèi)異于點(diǎn)的點(diǎn),且以、、為頂點(diǎn)的三角形與全等,請直接寫出滿足條件的點(diǎn)的坐標(biāo);
(3)已知,試探究在軸上是否存在點(diǎn),使是以為腰的等腰三角形?若存在,請直接寫出點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線的頂點(diǎn)為A(1,4),拋物線與y軸交于點(diǎn)B(0,3),與x軸交于C,D兩點(diǎn).點(diǎn)P是x軸上的一個動點(diǎn).
(1)求此拋物線的解析式;
(2)當(dāng)PA+PB的值最小時(shí),求點(diǎn)P的坐標(biāo);
(3)拋物線上是否存在一點(diǎn)Q(Q與B不重合),使△CDQ的面積等于△BCD的面積?若存在,直接寫出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線l:y=x﹣與x軸交于點(diǎn)B1,以O(shè)B1為邊長作等邊三角形A1OB1,過點(diǎn)A1作A1B2平行于x軸,交直線l于點(diǎn)B2,以A1B2為邊長作等邊三角形A2A1B2,過點(diǎn)A2作A2B3平行于x軸,交直線l于點(diǎn)B3,以A2B3為邊長作等邊三角形A3A2B3,…,則點(diǎn)A2017的橫坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O 的直徑 AB 垂直弦 CD 于點(diǎn) E,連接 CO 并延長交 AD于點(diǎn) F,且 CF⊥AD
(1)求證:點(diǎn) E 是 OB 的中點(diǎn);
(2)若 AB=12,求 CD 的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,中,,于點(diǎn),,.
(1)求,的長
(2)若點(diǎn)是射線上的一個動點(diǎn),作于點(diǎn),連結(jié).
①當(dāng)點(diǎn)在線段上時(shí),若是以為腰的等腰三角形,請求出所有符合條件的的長.
②設(shè)交直線于點(diǎn),連結(jié),,若,則的長為______________.(直接寫出結(jié)果)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com