【題目】某經(jīng)銷店為某工廠代銷一種建筑材料(這里的代銷是指廠家先免費提供貨源,待貨物售出后再進行結(jié)算,未售出的由廠家負(fù)責(zé)處理),當(dāng)每噸售價為260元時,月銷售量為45噸.該經(jīng)銷店為提高經(jīng)營利潤,準(zhǔn)備采取降價的方式進行促銷.經(jīng)市場調(diào)查發(fā)現(xiàn):月銷售量與售價成一次函數(shù)關(guān)系,且滿足下表所示的對應(yīng)關(guān)系.
綜合考慮各種因素,每售出一噸建筑材料共需支付廠家及其他費用100元.設(shè)當(dāng)每噸售價為x元時,該經(jīng)銷店的月利潤為y元.
售價 | 250元 | 240元 |
銷售量 | 52.5噸 | 60噸 |
(1)當(dāng)每噸售價是220元時,計算此時的月銷售量;
(2)求出y與x之間的函數(shù)關(guān)系式;
(3)該經(jīng)銷店要獲取最大月利潤,售價應(yīng)定為每噸多少元,并說明理由;
(4)小李說:“當(dāng)月利潤最大時,月銷售額也最大”,你認(rèn)為她的說法正確嗎?請說明理由.
【答案】(1)當(dāng)每噸售價是220元時,此時的月銷售量是75噸;(2)y=–x2+315x–24000;(3)該經(jīng)銷店要獲得最大月利潤,材料的售價應(yīng)定為每噸210元;(4)小李說的不對,理由見解析.
【解析】(1)因為月銷售量與售價成一次函數(shù)關(guān)系.
設(shè)銷售量為p=kx+b,
代入(250,52.5),(240,60),
得,所以,
∴p=–0.75x+240,(2分)
當(dāng)x=220時,p=–0.75×220+240=75(噸),
當(dāng)每噸售價是220元時,此時的月銷售量是75噸;(3分)
(2)由題意:y=(x–100)(–0.75x+240),
化簡得:y=–x2+315x–24000.(6分)
(3)y=–x2+315x–24000=–(x–210)2+9075.
∵x>100,
∴該經(jīng)銷店要獲得最大月利潤,材料的售價應(yīng)定為每噸210元.(9分)
(4)我認(rèn)為,小李說的不對.(10分)
理由:當(dāng)月利潤最大時,x為210元,
而對于月銷售額W=x[45+(260–x)÷10×7.5]=–(x–160)2+19200來說,
∵x>100,∴當(dāng)x為160元時,月銷售額W最大.
∴當(dāng)x為210元時,月銷售額W不是最大.
∴小李說的不對.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:已知正方形的邊長為a,將此正方形按照下面的方法進行剪拼:第一次,先沿正方形的對邊中點連線剪開,然后對接為一個長方形,則此長方形的周長為___;第二次,再沿長方形的對邊(長方形的寬)中點連線剪開,對接為新的長方形,如此繼續(xù)下去,第n次得到的長方形的周長為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一個18米高的樓頂上有一信號塔DC,李明同學(xué)為了測量信號塔的高度,在地面的A處測的信號塔下端D的仰角為30°,然后他正對塔的方向前進了18米到達地面的B處,又測得信號塔頂端C的仰角為60°,CD⊥AB與點E,E、B、A在一條直線上.請你幫李明同學(xué)計算出信號塔CD的高度(結(jié)果保留整數(shù),≈1.7,≈1.4 )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公園的人工湖邊上有一座假山,假山頂上有一豎起的建筑物CD,高為10米,數(shù)學(xué)小組為了測量假山的高度DE,在公園找了一水平地面,在A處測得建筑物點D(即山頂)的仰角為35°,沿水平方向前進20米到達B點,測得建筑物頂部C點的仰角為45°,求假山的高度DE.(結(jié)果精確到1米,參考數(shù)據(jù):sin35°≈,cos35°≈,tan35°≈)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形ABCD中,AB=6,BC=8.點P在矩形ABCD的內(nèi)部,點E在邊BC上,滿足△PBE∽△DBC,若△APD是等腰三角形,則PE的長為數(shù)___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】反比例函數(shù)y1=(x>0)的圖象與一次函數(shù)y2=﹣x+b的圖象交于A,B兩點,其中A(1,2)
(1)求這兩個函數(shù)解析式;
(2)在y軸上求作一點P,使PA+PB的值最小,并直接寫出此時點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為2的正方形ABCD中,P為AB的中點,Q為邊CD上一動點,設(shè)DQ=t(0≤t≤2),線段PQ的垂直平分線分別交邊AD、BC于點M、N,過Q作QE⊥AB于點E,過M作MF⊥BC于點F.
(1)當(dāng)t≠1時,求證:△PEQ≌△NFM;
(2)順次連接P、M、Q、N,設(shè)四邊形PMQN的面積為S,求出S與自變量t之間的函數(shù)關(guān)系式,并求S的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列判斷正確的是
A. “打開電視機,正在播NBA籃球賽”是必然事件
B. “擲一枚硬幣正面朝上的概率是”表示毎拋擲硬幣2次就必有1次反面朝上
C. 一組數(shù)據(jù)2,3,4,5,5,6的眾數(shù)和中位數(shù)都是5
D. 甲組數(shù)據(jù)的方差,乙組數(shù)據(jù)的方差,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分10分)古運河是揚州的母親河,為打造古運河風(fēng)光帶,現(xiàn)有一段長為180米的河道整治任務(wù)由兩工程隊先后接力完成.工作隊每天整治12米,工程隊每天整治8米,共用時20天.
(1)根據(jù)題意,甲、乙兩名同學(xué)分別列出尚不完整的方程組如下:
甲: 乙:
根據(jù)甲、乙兩名同學(xué)所列的方程組,請你分別指出未知數(shù)表示的意義,然后在方框中補全甲、乙兩名同學(xué)所列的方程組:
甲:表示________________,表示_______________;
乙:表示________________,表示_______________.
(2)求兩工程隊分別整治河道多少米.(寫出完整的解答過程)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com