二次函數(shù)的圖象與x軸交于點(diǎn)A(-1, 0),與y軸交于點(diǎn)C(0,-5),且經(jīng)過點(diǎn)D(3,-8).
(1)求此二次函數(shù)的解析式和頂點(diǎn)坐標(biāo);
(2)請你寫出一種平移的方法,使平移后拋物線的頂點(diǎn)落在原點(diǎn)處,并寫出平移后拋物線的解析式.
(1)y=x2-4x-5,(2,-9);
(2)先向左平移2個單位,再向上平移9個單位,得到的拋物線的解析式為y = x2

試題分析:(1)將A,C,D點(diǎn)的坐標(biāo)代入y=ax2+bx+c,即可得出得出二次函數(shù)的解析式與頂點(diǎn)坐標(biāo).
(2)要使平移后的拋物線頂點(diǎn)落在原點(diǎn),根據(jù)得出的二次函數(shù)的頂點(diǎn)的形式,平移圖象即可得出平移后的圖象.
試題解析:
(1)由題意,有
解得
∴此二次函數(shù)的解析式為.
,頂點(diǎn)坐標(biāo)為(2,-9).
(2)先向左平移2個單位,再向上平移9個單位,得到的拋物線的解析式為y = x2
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知直線分別與y軸、x軸相交于A、B兩點(diǎn),與二次函數(shù)的圖像交于A、C兩點(diǎn).

(1)當(dāng)點(diǎn)C坐標(biāo)為(,)時,求直線AB的解析式;
(2)在(1)中,如圖,將△ABO沿y軸翻折180°,若點(diǎn)B的對應(yīng)點(diǎn)D恰好落在二次函數(shù)的圖像上,求點(diǎn)D到直線AB的距離;
(3)當(dāng)-1≤x≤1時,二次函數(shù)有最小值-3,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,拋物線的頂點(diǎn)A的坐標(biāo)為(3,15),且過點(diǎn)(-2,10),對稱軸AB交軸于點(diǎn)B,點(diǎn)E是線段AB上一動點(diǎn),以EB為邊在對稱軸右側(cè)作矩形EBCD,使得點(diǎn)D恰好落在拋物線上,點(diǎn)D′是點(diǎn)D關(guān)于直線EC的軸對稱點(diǎn).

(1)求拋物線的解析式;
(2)若點(diǎn)D′恰好落在軸上的點(diǎn)(0,6)時,求此時D點(diǎn)的坐標(biāo);
(3)直線CD′交對稱軸AB于點(diǎn)F,
①當(dāng)點(diǎn)D′在對稱軸AB的左側(cè)時,且△ED′F∽△CDE,求出DE:DC的值;
②連結(jié)B D′,是否存在點(diǎn)E,使△E D′B為等腰三角形?若存在,請直接寫出BE:BC的值,若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖(1)是某河上一座古拱橋的截面圖,拱橋橋洞上沿是拋物線形狀,拋物線兩端點(diǎn)與水面的距離都是1m,拱橋的跨度為10m,橋洞與水面的最大距離是5m,橋洞兩側(cè)壁上各有一盞距離水面4m的景觀燈.現(xiàn)把拱橋的截面圖放在平面直角坐標(biāo)系中,如圖(2).

求(1)拋物線的解析式;
(2)兩盞景觀燈P1、P2之間的水平距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線軸相交于,兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸相交于點(diǎn)

(1)點(diǎn)的坐標(biāo)為        ,點(diǎn)的坐標(biāo)為        
(2)在軸的正半軸上是否存在點(diǎn),使以點(diǎn),,為頂點(diǎn)的三角形與相似?若存在,求出點(diǎn)的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線和直線相交于兩點(diǎn),,則不等式的解集是(     ).
A.B.
C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如果拋物線與拋物線關(guān)于軸對稱,則=        ,=       

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知拋物線的對稱軸為,點(diǎn)A,B均在拋物線上,且AB與x軸平行,其中點(diǎn)A的坐標(biāo)為(0,3),則點(diǎn)B的坐標(biāo)為       .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

將二次函數(shù)y=2的圖象向右平移2個單位,再向下平移3個單位后,所得圖象的函數(shù)表達(dá)式是           

查看答案和解析>>

同步練習(xí)冊答案