已知拋物線的對稱軸為,點A,B均在拋物線上,且AB與x軸平行,其中點A的坐標為(0,3),則點B的坐標為       .
(4,3).

試題分析:∵拋物線的對稱軸為,點A,B均在拋物線上,且AB與x軸平行,
其中點A的坐標為(0,3),
∴A,B縱坐標相等,且到對稱軸距離相等,
∴則點B的坐標為(4,3).
故答案是(4,3).
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知二次函數(shù)圖象頂點為C(1,0),直線與該二次函數(shù)交于A,B兩點,其中A點(3,4),B點在y軸上.

(1)求此二次函數(shù)的解析式;
(2)P為線段AB上一動點(不與A,B重合),過點P作y軸的平行線與二次函數(shù)交于點E.設線段PE長為h,點P橫坐標為x,求h與x之間的函數(shù)關(guān)系式;
(3)D為線段AB與二次函數(shù)對稱軸的交點,在AB上是否存在一點P,使四邊形DCEP為平行四邊形?若存在,請求出P點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

二次函數(shù)的圖象與x軸交于點A(-1, 0),與y軸交于點C(0,-5),且經(jīng)過點D(3,-8).
(1)求此二次函數(shù)的解析式和頂點坐標;
(2)請你寫出一種平移的方法,使平移后拋物線的頂點落在原點處,并寫出平移后拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

高科技發(fā)展公司投資500萬元,成功研制出一種市場需求量較大的高科技替代產(chǎn)品,并投入資金1500萬元作為固定投資,已知生產(chǎn)每件產(chǎn)品的成本是40元.在銷售過程中發(fā)現(xiàn):當銷售單價定為100元時,年銷售量為20萬件;銷售單價每增加10元,年銷售量將減少1萬件,設銷售單價為x(元),年銷售量為y(萬件),年獲利(年獲利=年銷售額一生產(chǎn)成本—投資)為z(萬元).
(1)試寫出y與x之間的函數(shù)關(guān)系式(不寫x的取值范圍);
(2)試寫出z與x之間的函數(shù)關(guān)系式(不寫x的取值范圍);
(3)公司計劃,在第一年按年獲利最大確定銷售單價進行銷售;到第二年年底獲利不低于1130萬元,請借助函數(shù)的大致圖象說明:第二年的銷售單價x(元)應確定在什么范圍內(nèi)?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知二次函數(shù)y=x2+bx+c過點A(1,0),C(0,﹣3)

(1)求此二次函數(shù)的解析式;
(2)在拋物線上存在一點P使△ABP的面積為10,請直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

二次函數(shù)的圖象可能是(   )

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,正三角形ABC的邊長為3cm,動點P從點A出發(fā),以每秒的速度,沿A→B→C的方向運動,到達點C時停止.設運動時間為(秒),=PC2,則關(guān)于的函數(shù)圖象大致為(   )

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知二次函數(shù)y=ax²+bx+c(a≠0)的圖像如圖所示,則下列結(jié)論中正確的是(  )
A.a(chǎn)>0B.3是方程ax²+bx+c=0的一個根
C.a(chǎn)+b+c=0D.當x<1時,y隨x的增大而減小

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

拋物線y=x2向上平移2個單位,得到新拋物線的函數(shù)表達式是(   )
A.y=x2-2B.y=(x-2)2C.y=x2+2D.y=(x+2)2

查看答案和解析>>

同步練習冊答案