【題目】為了優(yōu)化環(huán)境,將對某一小區(qū)環(huán)境進(jìn)行綠化,現(xiàn)有甲、乙兩家綠化公司進(jìn)行了投標(biāo),各自推出了綠化收費(fèi)方案如下:甲公司綠化費(fèi)用(元) 與綠化面積(平方米)是一次函數(shù)關(guān)系,如圖所示。
乙公司:綠化面積不超過1000平方米時(shí),統(tǒng)一收取費(fèi)用5000元;綠化面積超過1000平方米時(shí),超過部分每平方米收取3元.
(1)求甲、乙公司綠化費(fèi)用(元)與綠化面積(平方米)的函數(shù)表達(dá)式;
(2)如果該小區(qū)目前的綠化面積是1500平方米,試通過計(jì)算說明:選擇哪家公司的綠化費(fèi)用較少?
【答案】(1)甲公司y關(guān)于x的函數(shù)表達(dá)式為y甲=5x+500;乙公司關(guān)于x的函數(shù)表達(dá)式為y=;(2)選擇乙公司綠化費(fèi)用較少.
【解析】
(1)待定系數(shù)法即可求出甲公司函數(shù)式,分段函數(shù)表示乙公司函數(shù)表達(dá)式;
(2)將x=1500代入兩函數(shù)式即可解答.
解:(1)設(shè)甲公司y關(guān)于x的函數(shù)表達(dá)式為y=kx+b(k≠0),
函數(shù)圖像經(jīng)過(0,500),(100,1000)
得
得k=5,b=500,
∴甲公司y關(guān)于x的函數(shù)表達(dá)式為y甲=5x+500;
y乙=5000(0<x≤1000);
y乙=3(x-1000)+5000,即y乙=3x+2000(x>1000);
∴乙公司y關(guān)于x的函數(shù)表達(dá)式為y=;
(2)當(dāng)x=1500時(shí),y甲=5x+500=8000(元),
當(dāng)x=1500時(shí),y乙=3x+2000=6500(元),
∵8000>6500,
∴選擇乙公司綠化費(fèi)用較少.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某自行車經(jīng)營店銷售型,型兩種品牌自行車,今年進(jìn)貨和銷售價(jià)格如下表:(今年1年內(nèi)自行車的售價(jià)與進(jìn)價(jià)保持不變)
型車 | 型車 | |
進(jìn)貨價(jià)格(元/輛) | 1000 | 1100 |
銷售價(jià)格(元/輛) | 1500 |
今年經(jīng)過改造升級后,型車每輛銷售價(jià)比去年增加400元.已知型車去年1月份銷售總額為3.6萬元,今年1月份型車的銷售數(shù)量與去年1月份相同,而銷售總額比去年1月份增加.
(1)若設(shè)今年1月份的型自行車售價(jià)為元/輛,求的值?(用列方程的方法解答)
(2)該店計(jì)劃8月份再進(jìn)一批型和型自行車共50輛,且型車數(shù)量不超過型車數(shù)量的2倍,應(yīng)如何進(jìn)貨才能使這批自行車獲利最多?
(3)該店為吸引客源,準(zhǔn)備增購一種進(jìn)價(jià)為500元的型車,預(yù)算用8萬元購進(jìn)這三種車若干輛,其中型與型的數(shù)量之比為,則該店至少可以購進(jìn)三種車共多少輛?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著科技的進(jìn)步和網(wǎng)絡(luò)資源的豐富,在線學(xué)習(xí)已成為更多人的自主學(xué)習(xí)選擇.某校計(jì)劃為學(xué)生提供以下四類在線學(xué)習(xí)方式:在線閱讀、在線聽課、在線答題和在線討論.為了解學(xué)生需求,該校隨機(jī)對本校部分學(xué)生進(jìn)行了“你對哪類在線學(xué)習(xí)方式最感興趣”的調(diào)查,并根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.
根據(jù)圖中信息,解答下列問題:
(1)求本次調(diào)查的學(xué)生總?cè)藬?shù),并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)求扇形統(tǒng)計(jì)圖中“在線討論”對應(yīng)的扇形圓心角的度數(shù);
(3)該校共有學(xué)生人,請你估計(jì)該校對在線閱讀最感興趣的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在正方形ABCD中,對角線AC與BD相交于點(diǎn)O,AE,DF分別是∠OAD與∠ODC的平分線,AE的延長線與DF相交于點(diǎn)G,則下列結(jié)論:①AG⊥DF;②EF∥AB;③AB=AF;④AB=2EF.其中正確的結(jié)論是( )
A.①②B.③④C.①②③D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,E,F分別在邊AD,CD上,AF,BE相交于點(diǎn)G,若AE=3ED,DF=CF,則的值是
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)(,,是常數(shù),)的自變量x與函數(shù)值y的部分對應(yīng)值如下表:
… | -1 | 0 | 1 | 3 | … | |
… | 3 | 3 | … |
且當(dāng)時(shí),與其對應(yīng)的函數(shù)值.有下列結(jié)論:①;②3是關(guān)于的方程的一個根;③.其中,正確結(jié)論的個數(shù)是( )
A.0B.1C.2/span>D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半徑為2,圓心角為60°,則圖中陰影部分的面積是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,折線中,,,將折線繞點(diǎn)按逆時(shí)針方向旋轉(zhuǎn),得到折線,點(diǎn)的對應(yīng)點(diǎn)落在線段上的點(diǎn)處,點(diǎn)的對應(yīng)點(diǎn)落在點(diǎn)處,連接,若,則_____°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=x+4的圖象與反比例函數(shù)y=(k為常數(shù)且k≠0)的圖象交于A(﹣1,a),B兩點(diǎn),與x軸交于點(diǎn)C.
(1)求此反比例函數(shù)的表達(dá)式;
(2)若點(diǎn)P在x軸上,且S△ACP=S△BOC,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com