【題目】如圖,為的直徑,為上一點,和過點的直線互相垂直,垂足為,且平分.
(1)求證:為的切線;
(2)若,的半徑為3,求線段的長.
【答案】(1)見解析;(2)AC=
【解析】
(1)連接CO,通過等腰三角形的性質和角平分線的定義得出∠DAC=∠OCA,再根據(jù)內錯角相等,兩直線平行得出CO∥AD,再利用即可證明,則結論可證;
(2)連接BC,由圓周角定理的推論得出∠ACB=90°,再由角平分線得出∠BAC=30°,再根據(jù)AB=2r=6和特殊角的三角函數(shù)值即可求解.
(1)證明:連接CO,
∵AO=CO,
∴∠OAC=∠OCA,
∵AC平分∠DAB,
∴∠OAC=∠DAC,
∴∠DAC=∠OCA,
∴CO∥AD,
∴CO⊥CD,
∴DC為⊙O的切線;
(2)連接BC,
∵AB為⊙O的直徑,
∴∠ACB=90°,
∵∠DAB=60°,AC平分∠DAB,
∴∠BAC=∠DAB=30°,
∵⊙O的半徑為3,
∴AB=6,
∴AC=AB=3.
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,∠ABC=120°,線段AC繞點C順時針旋轉60°得到線段CD,連接BD.
(1)如圖1,若AB=BC,求證:BD平分∠ABC;
(2)如圖2,若AB=2BC,
①求的值;
②連接AD,當S△ABC=時,直接寫出四邊形ABCD的面積為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校在一次大課間活動中,采用了四鐘活動形式:A、跑步,B、跳繩,C、做操,D、游戲.全校學生都選擇了一種形式參與活動,小杰對同學們選用的活動形式進行了隨機抽樣調查,根據(jù)調查統(tǒng)計結果,繪制了不完整的統(tǒng)計圖.
請結合統(tǒng)計圖,回答下列問題:
(1)本次調查學生共 人, = ,并將條形圖補充完整;
(2)如果該校有學生2000人,請你估計該校選擇“跑步”這種活動的學生約有多少人?
(3)學校讓每班在A、B、C、D四鐘活動形式中,隨機抽取兩種開展活動,請用樹狀圖或列表的方法,求每班抽取的兩種形式恰好是“跑步”和“跳繩”的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,河流兩岸PQ,MN互相平行,C、D是河岸PQ上間隔50m的兩個電線桿,某人在河岸MN上的A處測得∠DAB=30°,然后沿河岸走了100m到達B處,測得∠CBF=70°,求河流的寬度(結果精確到個位,=1.73,sin70°=0.94,cos70°=0.34,tan70°=2.75)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了響應“綠水青山就是金山銀山”的號召,建設生態(tài)文明,某工廠自2019年1月開始限產(chǎn)并進行治污改造,其月利潤(萬元)與月份之間的變化如圖所示,治污完成前是反比例函數(shù)圖象的一部分,治污完成后是一次函數(shù)圖象的部分,下列選項錯誤的是( )
A.4月份的利潤為萬元
B.污改造完成后每月利潤比前一個月增加萬元
C.治污改造完成前后共有個月的利潤低于萬元
D.9月份該廠利潤達到萬元
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在邊長為2的正方形ABCD中,P為AB上的一動點,E為AD中點,PE交CD延長線于Q,過E作EF⊥PQ交BC的延長線于F,則下列結論:①△APE≌△DQE;②PQ=EF;③當P為AB中點時,CF=;④若H為QC的中點,當P從A移動到B時,線段EH掃過的面積為1,其中正確的有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)的圖像與軸交于、兩點,與軸交于點,.點在函數(shù)圖像上,軸,且,直線是拋物線的對稱軸,是拋物線的頂點.
(1)求、的值;
(2)如圖①,連接,線段上的點關于直線的對稱點恰好在線段上,求點的坐標;
(3)如圖②,動點在線段上,過點作軸的垂線分別與交于點,與拋物線交于點.試問:拋物線上是否存在點,使得與的面積相等,且線段的長度最。咳绻嬖,求出點的坐標;如果不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知一次函數(shù)y=x-3與反比例函數(shù)y=的圖象相交于點A(4,n),與x軸相交于點B.
(1)填空:n的值為 ,k的值為 ;
(2)以AB為邊作菱形ABCD,使點C在x軸正半軸上,點D在第一象限,求點D的坐標;
(3)觀察反比函數(shù)y=的圖象,當y≥-2時,請直接寫出自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙0的直徑,AB=10,CD是⊙0的切線,C為切點,交直線AB于E,AD⊥CD于D,AD=2CD.
(1)求證:∠CAB=∠CAD;
(2)求CD的長;
(3)求AE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com