【題目】如圖①,在四邊形ABCD中,ACBD于點E,AB=AC=BD,點MBC中點,N為線段AM上的點,且MB=MN.

(1)求證:BN平分∠ABE;

(2)若BD=1,連結DN,當四邊形DNBC為平行四邊形時,求線段BC的長;

(3)如圖②,若點FAB的中點,連結FN、FM,求證:MFN∽△BDC.

【答案】(1)證明見解析;(2);(3)證明見解析.

【解析】(1)由AB=AC知∠ABC=ACB,由等腰三角形三線合一知AMBC,從而根據(jù)∠MAB+ABC=EBC+ACB知∠MAB=EBC,再由MBN為等腰直角三角形知∠EBC+NBE=MAB+ABN=MNB=45°可得證;

(2)設BM=CM=MN=a,知DN=BC=2a,證ABN≌△DBNAN=DN=2a,RtABM中利用勾股定理可得a的值,從而得出答案;

(3)FAB的中點知MF=AF=BF及∠FMN=MAB=CBD,再由即可得證.

(1)AB=AC,

∴∠ABC=ACB,

MBC的中點,

AMBC,

RtABM中,∠MAB+ABC=90°,

RtCBE中,∠EBC+ACB=90°,

∴∠MAB=EBC,

又∵MB=MN,

∴△MBN為等腰直角三角形,

∴∠MNB=MBN=45°,

∴∠EBC+NBE=45°,MAB+ABN=MNB=45°,

∴∠NBE=ABN,即BN平分∠ABE;

(2)設BM=CM=MN=a,

∵四邊形DNBC是平行四邊形,

DN=BC=2a,

ABNDBN中,

,

∴△ABN≌△DBN(SAS),

AN=DN=2a,

RtABM中,由AM2+MB2=AB2可得(2a+a)2+a2=1,

解得:a=±(負值舍去),

BC=2a=;

(3)FAB的中點,

∴在RtMAB中,MF=AF=BF,

∴∠MAB=FMN,

又∵∠MAB=CBD,

∴∠FMN=CBD,

,

MFN∽△BDC.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,ABC是等邊三角形,AE=CD,BQADQ,BEAD于點P,下列說法:①∠APE=C,AQ=BQ,BP=2PQ,AE+BD=AB,其中正確的個數(shù)有( )個。

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在 ABCD中,CD=2AD,BEAD于點E,F(xiàn)DC的中點,連結EF、BF,下列結論:①∠ABC=2ABF;EF=BF;S四邊形DEBC=2SEFB④∠CFE=3DEF,其中正確結論的個數(shù)共有( ).

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在邊長為1個單位長度的正方形網(wǎng)格中建立如圖所示的平面直角坐標系,ABC的頂點都在格點上,請解答下列問題:

(1)①作出ABC向左平移4個單位長度后得到的A1B1C1, 并寫出點C1的坐標;

②作出ABC關于原點O對稱的A2B2C2, 并寫出點C2的坐標;

(2)已知ABC關于直線l對稱的A3B3C3的頂點A3的坐標為(-4,-2),請直接寫出直線l的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了推進球類運動的發(fā)展,某校組織校內球類運動會,分籃球、足球、排球、羽毛球、乒乓球五項,要求每位學生必須參加一項并且只能參加一項,某班有一名學生根據(jù)自己了解的班內情況繪制了如圖所示的不完整統(tǒng)計表和扇形統(tǒng)計圖.

請根據(jù)圖表中提供的信息,解答下列問題:

(1)圖表中m=________,n=________;

(2)若該校學生共有1000人,則該校參加羽毛球活動的人數(shù)約為________人;

(3)該班參加乒乓球活動的4位同學中,有3位男同學(分別用A,B,C表示)和1位女同學(用D表示),現(xiàn)準備從中選出兩名同學參加雙打比賽,用樹狀圖或列表法求出恰好選出一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,自左向右,水平擺放一組小球,按照以下規(guī)律排列,如:紅球,黃球,綠球,紅球,黃球,綠球,…嘉琪依次在小球上標上數(shù)字12,3,4,56,…,則從左往右第100個黃球上所標的數(shù)字為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊△ABC中,點D,E分別在邊BC,AB上,且BD=AE,AD與CE交于點F,作CM⊥AD,垂足為M,下列結論不正確的是( 。

A. AD=CE B. MF=CF C. ∠BEC=∠CDA D. AM=CM

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P,點Q分別代表兩個村莊,直線l代表兩個村莊中間的一條公路.根據(jù)居民出行的需要,計劃在公路l上的某處設置一個公交站.

(1)若考慮到村莊P居住的老年人較多,計劃建一個離村莊P最近的車站,請在公路l上畫出車站的位置(用點M表示),依據(jù)是   

(2)若考慮到修路的費用問題,希望車站的位置到村莊P和村莊Q的距離之和最小,請在公路l上畫出車站的位置(用點N表示),依據(jù)是   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有一個△ABC,三邊長為AC=6,BC=8AB=10,沿AD折疊,使點C落在AB邊上的點E處.

1)試判斷△ABC的形狀,并說明理由.

2)求線段CD的長.

查看答案和解析>>

同步練習冊答案