【題目】已知,如圖,△ABC是等邊三角形,AE=CD,BQ⊥AD于Q,BE交AD于點(diǎn)P,下列說法:①∠APE=∠C,②AQ=BQ,③BP=2PQ,④AE+BD=AB,其中正確的個(gè)數(shù)有( )個(gè)。
A. 4B. 3C. 2D. 1
【答案】B
【解析】
根據(jù)等邊三角形的性質(zhì)可得AB=AC,∠BAE=∠C=60°,利用“邊角邊”證明△ABE和△CAD全等,然后分析判斷各選項(xiàng)即可.
證明:∵△ABC是等邊三角形,
∴AB=AC,∠BAE=∠C=60°,
在△ABE和△CAD中,
,
∴△ABE≌△CAD(SAS),
∴∠1=∠2,
∴∠BPQ=∠2+∠3=∠1+∠3=∠BAC=60°,
∴∠APE=∠C=60°,故①正確
∵BQ⊥AD,
∴∠PBQ=90°∠BPQ=90°60°=30°,
∴BP=2PQ.故③正確,
∵AC=BC.AE=DC,
∴BD=CE,
∴AE+BD=AE+EC=AC=AB,故④正確,
無法判斷BQ=AQ,故②錯(cuò)誤,
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC中,∠BAC>90°,點(diǎn)D為BC的中點(diǎn),點(diǎn)E在AC上,將△CDE沿DE折疊,使得點(diǎn)C恰好落在BA的延長(zhǎng)線上的點(diǎn)F處,連結(jié)AD,則下列結(jié)論不一定正確的是( 。
A. AE=EF B. AB=2DE
C. △ADF和△ADE的面積相等 D. △ADE和△FDE的面積相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請(qǐng)你認(rèn)真閱讀下面的小探究系列,完成所提出的問題.
(1)如圖1,將角尺放在正方形ABCD上,使角尺的直角頂點(diǎn)E與正方形ABCD的頂點(diǎn)D重合,角尺的一邊交CB于點(diǎn)F,將另一邊交BA的延長(zhǎng)線于點(diǎn)G.求證:EF=EG.
(2)如圖2,移動(dòng)角尺,使角尺的頂點(diǎn)E始終在正方形ABCD的對(duì)角線BD上,其余條件不變,請(qǐng)你思考后直接回答EF和EG的數(shù)量關(guān)系:EF EG(用“=”或“≠”填空)
(3)運(yùn)用(1)(2)解答中所積累的活動(dòng)經(jīng)驗(yàn)和數(shù)學(xué)知識(shí),完成下題:如圖3,將(2)中的“正方形ABCD”改成“矩形ABCD”,使角尺的一邊經(jīng)過點(diǎn)A(即點(diǎn)G、A重合),其余條件不變,若AB=4,BC=3,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某木板加工廠將購(gòu)進(jìn)的A型、B型兩種木板加工成C型,D型兩種木板出售,已知一塊A型木板的進(jìn)價(jià)比一塊B型木板的進(jìn)價(jià)少10元,且購(gòu)買3塊A型木板和2塊B型木板共花費(fèi)120元.
(1)A型木板與B型木板的進(jìn)價(jià)各是多少元?
(2)根據(jù)市場(chǎng)需求,該木板加工廠決定用不超過2770元購(gòu)進(jìn)A型木板、B型木板共100塊,若一塊A型木板可制成1塊C型木板、2塊D型木板;一塊B型木板可制成2塊C型木板、1塊D型木板,且生產(chǎn)出來的C型木板數(shù)量不少于D型木板的數(shù)量的7/5.
①該木板加工廠有幾種進(jìn)貨方案?
②若C型木板每塊售價(jià)30元,D型木板每塊售價(jià)25元,且生產(chǎn)出來的C型木板、D型木板全部售出,哪一種方案獲得的利潤(rùn)最大,求出最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小烏龜從某點(diǎn)出發(fā),在一條直線上來回爬行,假定向右爬行的路程記為正數(shù),向左爬行的路程記為負(fù)數(shù),爬行的各段路程依次為(單位:):+5,-3,+10,-8,-6,+12,-10
(1)小烏龜最后是否回到出發(fā)點(diǎn)?
(2)小烏龜離開原點(diǎn)的距離最遠(yuǎn)是多少厘米?
(3)小烏龜在爬行過程中,若每爬行獎(jiǎng)勵(lì)1粒芝麻,則小烏龜一共得到多少粒芝麻?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,兩點(diǎn)在數(shù)軸上,點(diǎn)表示的數(shù)為-10,,點(diǎn)以每秒3個(gè)單位長(zhǎng)度的速度從點(diǎn)向右運(yùn)動(dòng).點(diǎn)以每秒2個(gè)單位長(zhǎng)度的速度從點(diǎn)向右運(yùn)動(dòng)(點(diǎn)、同時(shí)出發(fā))
(1)請(qǐng)你寫出數(shù)軸上點(diǎn)對(duì)應(yīng)的數(shù);
(2)當(dāng)運(yùn)動(dòng)的時(shí)間為3秒時(shí),請(qǐng)你求出此時(shí)點(diǎn)、在數(shù)軸上對(duì)應(yīng)的數(shù),并求出、之間的距離;
(3)經(jīng)過幾秒,點(diǎn)、點(diǎn)分別到原點(diǎn)的距離相等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明和小亮玩撲克牌游戲,小明背對(duì)小亮,讓小亮按下列四個(gè)步驟操作:
第一步:分發(fā)左、中、右三堆牌,每堆牌都為張,且;
第二步:從左邊一堆拿出兩張,放入中間一堆;
第三步:從右邊一堆拿出五張,放入中間一堆
第四步:左邊一堆有幾張牌,就從中間一堆拿幾張牌放入左邊一堆.
(1)填寫下表中的空格:
步驟 | 左邊一堆牌的張數(shù) | 中間一堆牌的張數(shù) | 右邊一堆牌的張數(shù) |
第一步后 | |||
第二步后 | |||
第三步后 | |||
第四步后 |
(2)如若第四步完成后,中間一堆牌的張數(shù)的2倍恰好是右邊一堆牌的張數(shù)的3倍,試求第一步后,每堆牌各有多少?gòu)垼?/span>
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】校體育組為了解全校學(xué)生“最喜歡的一項(xiàng)球類項(xiàng)目”,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的不完整的統(tǒng)計(jì)圖:
請(qǐng)你根據(jù)統(tǒng)計(jì)圖回答下列問題:
(1)喜歡乒乓球的學(xué)生所占的百分比是多少?并請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(2)請(qǐng)你估計(jì)全校500名學(xué)生中最喜歡“排球”項(xiàng)目的有多少名?
(3)在扇形統(tǒng)計(jì)圖中,“籃球”部分所對(duì)應(yīng)的圓心角是多少度?
(4)籃球教練在制定訓(xùn)練計(jì)劃前,將從最喜歡籃球項(xiàng)目的甲、乙、丙、丁四名同學(xué)中任選兩人進(jìn)行個(gè)別座談,請(qǐng)用列表法或樹狀圖法求抽取的兩人恰好是甲和乙的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在四邊形ABCD中,AC⊥BD于點(diǎn)E,AB=AC=BD,點(diǎn)M為BC中點(diǎn),N為線段AM上的點(diǎn),且MB=MN.
(1)求證:BN平分∠ABE;
(2)若BD=1,連結(jié)DN,當(dāng)四邊形DNBC為平行四邊形時(shí),求線段BC的長(zhǎng);
(3)如圖②,若點(diǎn)F為AB的中點(diǎn),連結(jié)FN、FM,求證:△MFN∽△BDC.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com