精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在平面直角坐標系中,Rt△ABC的三個頂點分別是A(﹣3,2),B(0,4),C(0,2).

(1)將△ABC以點C為旋轉中心旋轉180°,畫出旋轉后對應的△A1B1C;平移△ABC,若點A的對應點A2的坐標為(0,﹣4),畫出平移后對應的△A2B2C2;
(2)若將△A1B1C繞某一點旋轉可以得到△A2B2C2;請在圖中標明旋轉中心P的位置并寫出其坐標.

【答案】
(1)解:如圖,△A1B1C和△A2B2C2為所作;


(2)解:如圖,點P為所作,P點坐標為( ,﹣1).

【解析】(1)由A(﹣3,2),B(0,4),C(0,2),點A的對應點A2的坐標為(0,﹣4),畫出△A1B1C和△A2B2C2;(2)根據旋轉的性質,得到P點坐標為( ,﹣1).
【考點精析】利用坐標與圖形變化-平移對題目進行判斷即可得到答案,需要熟知新圖形的每一點,都是由原圖形中的某一點移動后得到的,這兩個點是對應點;連接各組對應點的線段平行且相等.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】在四張編號為A,B,C,D的卡片(除編號外,其余完全相同)的正面分別寫上如圖所示的正整數后,背面向上,洗勻放好.

(1)我們知道,滿足a2+b2=c2的三個正整數a,b,c成為勾股數,嘉嘉從中隨機抽取一張,求抽到的卡片上的數是勾股數的概率P1;
(2)琪琪從中隨機抽取一張(不放回),再從剩下的卡片中隨機抽取一張(卡片用A,B,C,D表示).請用列表或畫樹形圖的方法求抽到的兩張卡片上的數都是勾股數的概率P2 , 并指出她與嘉嘉抽到勾股數的可能性一樣嗎?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如果兩個角之差的絕對值等于60°,則稱這兩個角互為互優(yōu)角,(本題中所有角都是指大于且小于180°的角)

(1)若∠1和∠2互為互優(yōu)角,當∠1=90°時,則∠2=_____°;

(2)如圖1,將一長方形紙片沿著EP對折(P在線段BC上,點E在線段AB)使點B落在點若與互為互優(yōu)角,求∠BPE的度數;

(3)再將紙片沿著PF對折(F在線段CDAD)使點C落在C′

①如圖2,若點E、C′、P在同一直線上,且互為互優(yōu)角,求∠EPF的度數(對折時,線段落在∠EPF內部);

②若∠B′PC′與∠EPF互為互優(yōu)角,則∠BPE求∠CPF應滿足什么樣的數量關系(直接寫出結果即可)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】D,E分別是不等邊三角形ABC(即AB≠BC≠AC)的邊AB,AC的中點.O是△ABC所在平面上的動點,連接OB,OC,點G,F分別是OB,OC的中點,順次連接點D,G,F,E.

(1)如圖,當點O在△ABC的內部時,求證:四邊形DGFE是平行四邊形;
(2)若四邊形DGFE是菱形,則OA與BC應滿足怎樣的數量關系?(直接寫出答案,不需要說明理由.)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知,直線ABCD,EAB、CD間的一點,連接EA、EC.


(1)如圖①,若∠A=20°,C=40°,則∠AEC=   °.

(2)如圖②,若∠A=x°,C=y°,則∠AEC=   °.

(3)如圖③,若∠A=α,C=β,則α,β與∠AEC之間有何等量關系.并簡要說明.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD中,對角線AC,BD相交于點O,點E,F分別在OA,OC上

(1)給出以下條件;①OB=OD,②∠1=∠2,③OE=OF,請你從中選取兩個條件證明△BEO≌△DFO;

(2)在(1)條件中你所選條件的前提下,添加AE=CF,求證:四邊形ABCD是平行四邊形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx﹣4與x軸交于A(4,0)、B(﹣2,0)兩點,與y軸交于點C,點P是線段AB上一動點(端點除外),過點P作PD∥AC,交BC于點D,連接CP.

(1)求該拋物線的解析式;
(2)當動點P運動到何處時,BP2=BDBC;
(3)當△PCD的面積最大時,求點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線ykx4(k0)x軸、y軸分別交于點B,A,直線y=-2x1y軸交于點C,與直線ykx4交于點D,ACD的面積是.

(1)求直線AB的表達式;

(2)設點E在直線AB上,當ACE是直角三角形時,請直接寫出點E的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,菱形ABCD和菱形ECGF的邊長分別為2和4,∠A=120°.則陰影部分面積是 . (結果保留根號)

查看答案和解析>>

同步練習冊答案