【題目】如圖,在Rt△ABC中,∠C=90°,點D是AC的中點,過點A,D作⊙O,使圓心O在AB上,⊙O與AB交于點E.
(1)若∠A+∠CDB=90°,求證:直線BD與⊙O相切;
(2)若AD:AE=4:5,BC=6,求⊙O的直徑.

【答案】
(1)解:連接OD,

∵OA=OD,

∴∠A=∠ADO,

又∵∠A+∠CDB=90°,

∴∠ADO+∠CDB=90°,

∴∠ODB=180°﹣(∠ADO+∠CDB)=90°,

∴BD⊥OD,

∴BD是⊙O切線


(2)解:連接DE,

∵AE是直徑,

∴∠ADE=90°,

又∵∠C=90°,

∴∠ADE=∠C,

∵∠A=∠A,

∴△ADE∽△ACB,

∴AD:AC=DE:BC

又∵D是AC中點,

∴AD= AC,

∴DE= BC,

∵BC=6,∴DE=3,

∵AD:AE=4:5,

在直角△ADE中,設AD=4x,AE=5x,

那么DE=3x,

∴x=1

∴AE=5


【解析】(1)連接OD,由∠A=∠ADO,進而證得∠ADO+∠CDB=90°,而證得BD⊥OD;(2)連接DE,由AE是直徑,得到∠ADE=90°,然后利用已知條件可以證明DE∥BC,從而得到△ADE∽△ACB,接著利用相似三角形的性質得到AD:AC=DE:BC,又D是AC中點,由此可以求出DE的長度,而AD:AE=4:5,在直角△ADE中,設AD=4x,AE=5x,那么DE=3x,由此求出x=1即可解決問題.
【考點精析】掌握勾股定理的概念和三角形中位線定理是解答本題的根本,需要知道直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;連接三角形兩邊中點的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線y=kx+b與坐標軸分別交于點A(0,8)、B(8,0),動點 C從原點O出發(fā)沿OA方向以每秒1個單位長度向點A運動,動點D從點B出發(fā)沿BO方向以每秒1個單位長度向點O運動,動點C、D同時出發(fā),當動點D到達原點O時,點C、D停止運動,設運動時間為t 秒.

(1)直接寫出直線的解析式:;
(2)若E點的坐標為(﹣2,0),當△OCE的面積為5 時.
①求t的值;
②探索:在y軸上是否存在點P,使△PCD的面積等于△CED的面積?若存在,請求出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明乘出租車去體育場,有兩條路線可供選擇:路線一的全程是25千米,但交通比較擁堵,路線二的全程是36千米,平均車速比走路線一時的平均車速能提高80%,因此能比走路線一少用10分鐘到達.求小明走路線一時的平均速度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正△ABC的邊長為3cm,動點P從點A出發(fā),以每秒1cm的速度,沿A→B→C的方向運動,到達點C時停止,設運動時間為x(秒),y=PC2 , 則y關于x的函數(shù)的圖象大致為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在同一坐標系中,正比例函數(shù)y=x與反比例函數(shù) 的圖象大致是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在⊙O中,圓心角∠AOB=120°,弦AB=2 cm,則OA=cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】不等式組 的解集在數(shù)軸上正確表示的是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工廠投入生產一種機器的總成本為2000萬元.當該機器生產數(shù)量至少為10臺,但不超過70臺時,每臺成本y與生產數(shù)量x之間是一次函數(shù)關系,函數(shù)y與自變量x的部分對應值如下表:

x(單位:臺)

10

20

30

y(單位:萬元∕臺)

60

55

50


(1)求y與x之間的函數(shù)關系式,并寫出自變量x的取值范圍;
(2)求該機器的生產數(shù)量;
(3)市場調查發(fā)現(xiàn),這種機器每月銷售量z(臺)與售價a(萬元∕臺)之間滿足如圖所示的函數(shù)關系.該廠生產這種機器后第一個月按同一售價共賣出這種機器25臺,請你求出該廠第一個月銷售這種機器的利潤.(注:利潤=售價﹣成本)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知函數(shù)y=﹣x2+(m﹣1)x+m(m為常數(shù)).
(1)該函數(shù)的圖象與x軸公共點的個數(shù)是
A.0
B.1
C.2
D.1或2
(2)求證:不論m為何值,該函數(shù)的圖象的頂點都在函數(shù)y=(x+1)2的圖象上.
(3)當﹣2≤m≤3時,求該函數(shù)的圖象的頂點縱坐標的取值范圍.

查看答案和解析>>

同步練習冊答案