【題目】小明乘出租車去體育場,有兩條路線可供選擇:路線一的全程是25千米,但交通比較擁堵,路線二的全程是36千米,平均車速比走路線一時的平均車速能提高80%,因此能比走路線一少用10分鐘到達.求小明走路線一時的平均速度.

【答案】解:設路線一的平均車速為xkm/h,則路線一需要的時間是 小時,路線二的平均車速是(1+80%)x=1.8xkm/h,
根據(jù)題意得: = ,
=
解得 x=50,
經(jīng)檢驗:x=50是原分式方程的解,
答:小明走路線一時的平均速度為50km/h
【解析】先設路線一的平均車速為xkm/h,根據(jù)已知表示出路線一的時間和路線二的平均速度;再根據(jù)等量關(guān)系式:路線一的時間﹣10分鐘=路線二的時間列分式方程,解出即可.
【考點精析】解答此題的關(guān)鍵在于理解分式方程的應用的相關(guān)知識,掌握列分式方程解應用題的步驟:審題、設未知數(shù)、找相等關(guān)系列方程、解方程并驗根、寫出答案(要有單位).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】多多班長統(tǒng)計去年1~8月“書香校園”活動中全班同學的課外閱讀數(shù)量(單位:本),繪制了如圖折線統(tǒng)計圖,下列說法正確的是(
A.極差是47
B.眾數(shù)是42
C.中位數(shù)是58
D.每月閱讀數(shù)量超過40的有4個月

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2014年12月28日“青煙威榮”城際鐵路正式開通,從煙臺到北京的高鐵里程比普快里程縮短了81千米,運行時間減少了9小時,已知煙臺到北京的普快列車里程約為1026千米,高鐵平均時速為普快平均時速的2.5倍.
(1)求高鐵列車的平均時速;
(2)某日王老師要去距離煙臺大約630千米的某市參加14:00召開的會議,如果他買到當日8:40從煙臺至城市的高鐵票,而且從該市火車站到會議地點最多需要1.5小時,試問在高鐵列車準點到達的情況下他能在開會之前到達嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在Rt△ABC中,∠C=90°,AC=9,BC=12,則點C到AB的距離是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線 分別與x軸、y軸交于點B、C,且與直線 交于點A.

(1)分別求出點A、B、C的坐標;
(2)若D是線段OA上的點,且△COD的面積為12,求直線CD的函數(shù)表達式;
(3)在(2)的條件下,設P是射線CD上的點,在平面內(nèi)是否存在點Q,使以O、C、P、Q為頂點的四邊形是菱形?若存在,直接寫出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AD=6,AB=4,點E、G、H、F分別在AB、BC、CD、AD上,且AF=CG=2,BE=DH=1,點P是直線EF、GH之間任意一點,連接PE、PF、PG、PH,則△PEF和△PGH的面積和等于

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)y=﹣ x+4的圖象與x軸、y軸分別相交于點C、D,四邊形ABCD是正方形,反比例函數(shù)y= 的圖象在第一象限經(jīng)過點A.

(1)求點A的坐標以及k的值:
(2)點P是反比例函數(shù)y= (x>0)的圖象上一點,且△PAO的面積為21,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,點D是AC的中點,過點A,D作⊙O,使圓心O在AB上,⊙O與AB交于點E.
(1)若∠A+∠CDB=90°,求證:直線BD與⊙O相切;
(2)若AD:AE=4:5,BC=6,求⊙O的直徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣ x2+ x+2與x軸交于點A,B,與y軸交于點C.

(1)試求A,B,C的坐標;
(2)將△ABC繞AB中點M旋轉(zhuǎn)180°,得到△BAD.
①求點D的坐標;
②判斷四邊形ADBC的形狀,并說明理由;
(3)在該拋物線對稱軸上是否存在點P,使△BMP與△BAD相似?若存在,請直接寫出所有滿足條件的P點的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案