【題目】如圖,拋物線y=﹣ x2+ x+2與x軸交于點A,B,與y軸交于點C.

(1)試求A,B,C的坐標;
(2)將△ABC繞AB中點M旋轉(zhuǎn)180°,得到△BAD.
①求點D的坐標;
②判斷四邊形ADBC的形狀,并說明理由;
(3)在該拋物線對稱軸上是否存在點P,使△BMP與△BAD相似?若存在,請直接寫出所有滿足條件的P點的坐標;若不存在,請說明理由.

【答案】
(1)

解:當y=0時,0=﹣ x2+ x+2,

解得:x1=﹣1,x2=4,

則A(﹣1,0),B(4,0),

當x=0時,y=2,

故C(0,2)


(2)

解:①過點D作DE⊥x軸于點E,

∵將△ABC繞AB中點M旋轉(zhuǎn)180°,得到△BAD,

∴DE=2,AO=BE=1,OM=ME=1.5,

∴D(3,﹣2);

②∵將△ABC繞AB中點M旋轉(zhuǎn)180°,得到△BAD,

∴AC=BD,AD=BC,

∴四邊形ADBC是平行四邊形,

∵AC= = ,BC= =2 ,

AB=5,

∴AC2+BC2=AB2,

∴△ACB是直角三角形,

∴∠ACB=90°,

∴四邊形ADBC是矩形


(3)

解:由題意可得:BD= ,AD=2 ,

= ,

當△BMP∽△ADB時,

= =

可得:BM=2.5,

則PM=1.25,

故P(1.5,1.25),

當△BMP1∽△ABD時,

P1(1.5,﹣1.25),

當△BMP2∽△BDA時,

可得:P2(1.5,5),

當△BMP3∽△BDA時,

可得:P3(1.5,﹣5),

綜上所述:點P的坐標為:(1.5,1.25),(1.5,﹣1.25),(1.5,5),(1.5,﹣5)


【解析】(1)直接利用y=0,x=0分別得出A,B,C的坐標;(2)①利用旋轉(zhuǎn)的性質(zhì)結(jié)合三角形各邊長得出D點坐標;②利用平行四邊形的判定方法結(jié)合勾股定理的逆定理得出四邊形ADBC的形狀;(3)直接利用相似三角形的判定與性質(zhì)結(jié)合三角形各邊長進而得出答案.
【考點精析】解答此題的關鍵在于理解二次函數(shù)的圖象的相關知識,掌握二次函數(shù)圖像關鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點,以及對二次函數(shù)的性質(zhì)的理解,了解增減性:當a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】小明乘出租車去體育場,有兩條路線可供選擇:路線一的全程是25千米,但交通比較擁堵,路線二的全程是36千米,平均車速比走路線一時的平均車速能提高80%,因此能比走路線一少用10分鐘到達.求小明走路線一時的平均速度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】不等式組 的解集在數(shù)軸上正確表示的是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工廠投入生產(chǎn)一種機器的總成本為2000萬元.當該機器生產(chǎn)數(shù)量至少為10臺,但不超過70臺時,每臺成本y與生產(chǎn)數(shù)量x之間是一次函數(shù)關系,函數(shù)y與自變量x的部分對應值如下表:

x(單位:臺)

10

20

30

y(單位:萬元∕臺)

60

55

50


(1)求y與x之間的函數(shù)關系式,并寫出自變量x的取值范圍;
(2)求該機器的生產(chǎn)數(shù)量;
(3)市場調(diào)查發(fā)現(xiàn),這種機器每月銷售量z(臺)與售價a(萬元∕臺)之間滿足如圖所示的函數(shù)關系.該廠生產(chǎn)這種機器后第一個月按同一售價共賣出這種機器25臺,請你求出該廠第一個月銷售這種機器的利潤.(注:利潤=售價﹣成本)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點C是AB的中點,AD=CE,CD=BE.
(1)求證:△ACD≌△CBE;
(2)連接DE,求證:四邊形CBED是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個口袋中放有290個涂有紅、黑、白三種顏色的質(zhì)地相同的小球.若紅球個數(shù)是黑球個數(shù)的2倍多40個.從袋中任取一個球是白球的概率是
(1)求袋中紅球的個數(shù);
(2)求從袋中任取一個球是黑球的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了解八年級學生最喜歡的球類情況,隨機抽取了八年級部分學生進行問卷調(diào)查,調(diào)查分為最喜歡籃球、乒乓球、足球、排球共四種情況,每名同學選且只選一項,現(xiàn)將調(diào)查結(jié)果繪制成如下所示的兩幅統(tǒng)計圖.
請結(jié)合這兩幅統(tǒng)計圖,解決下列問題:
(1)在這次問卷調(diào)查中,一共抽取了名學生;
(2)請補全條形統(tǒng)計圖;
(3)若該校八年級共有300名學生,請你估計其中最喜歡排球的學生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知函數(shù)y=﹣x2+(m﹣1)x+m(m為常數(shù)).
(1)該函數(shù)的圖象與x軸公共點的個數(shù)是
A.0
B.1
C.2
D.1或2
(2)求證:不論m為何值,該函數(shù)的圖象的頂點都在函數(shù)y=(x+1)2的圖象上.
(3)當﹣2≤m≤3時,求該函數(shù)的圖象的頂點縱坐標的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AC是矩形ABCD的對角線,⊙O是△ABC的內(nèi)切圓,現(xiàn)將矩形ABCD按如圖所示的方式折疊,使點D與點O重合,折痕為FG.點F,G分別在邊AD,BC上,連結(jié)OG,DG.若OG⊥DG,且⊙O的半徑長為1,則下列結(jié)論不成立的是(
A.CD+DF=4
B.CD﹣DF=2 ﹣3
C.BC+AB=2 +4
D.BC﹣AB=2

查看答案和解析>>

同步練習冊答案