【題目】某校為了解八年級(jí)學(xué)生最喜歡的球類情況,隨機(jī)抽取了八年級(jí)部分學(xué)生進(jìn)行問卷調(diào)查,調(diào)查分為最喜歡籃球、乒乓球、足球、排球共四種情況,每名同學(xué)選且只選一項(xiàng),現(xiàn)將調(diào)查結(jié)果繪制成如下所示的兩幅統(tǒng)計(jì)圖.
請(qǐng)結(jié)合這兩幅統(tǒng)計(jì)圖,解決下列問題:
(1)在這次問卷調(diào)查中,一共抽取了名學(xué)生;
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該校八年級(jí)共有300名學(xué)生,請(qǐng)你估計(jì)其中最喜歡排球的學(xué)生人數(shù).

【答案】
(1)60
(2)解:喜歡足球的有:60﹣6﹣24﹣12=18(人),

補(bǔ)全的條形統(tǒng)計(jì)圖如右圖所示;


(3)解:由題意可得,

最喜歡排球的人數(shù)為:300× =60,

即最喜歡排球的學(xué)生有60人


【解析】解:(1)由題意可得, 本次調(diào)查的學(xué)生有:24÷40%=60(人),
所以答案是:60;
【考點(diǎn)精析】利用扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖對(duì)題目進(jìn)行判斷即可得到答案,需要熟知能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目以及事物的變化情況;能清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目,但是不能清楚地表示出各個(gè)部分在總體中所占的百分比以及事物的變化情況.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=﹣ x+4的圖象與x軸、y軸分別相交于點(diǎn)C、D,四邊形ABCD是正方形,反比例函數(shù)y= 的圖象在第一象限經(jīng)過點(diǎn)A.

(1)求點(diǎn)A的坐標(biāo)以及k的值:
(2)點(diǎn)P是反比例函數(shù)y= (x>0)的圖象上一點(diǎn),且△PAO的面積為21,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A(4,0),O為坐標(biāo)原點(diǎn),P是線段OA上任意一點(diǎn)(不含端點(diǎn)O,A),過P、O兩點(diǎn)的二次函數(shù)y1和過P、A兩點(diǎn)的二次函數(shù)y2的圖象開口均向下,它們的頂點(diǎn)分別為B、C,射線OB與AC相交于點(diǎn)D.當(dāng)OD=AD=3時(shí),這兩個(gè)二次函數(shù)的最大值之和等于( )

A.
B.
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣ x2+ x+2與x軸交于點(diǎn)A,B,與y軸交于點(diǎn)C.

(1)試求A,B,C的坐標(biāo);
(2)將△ABC繞AB中點(diǎn)M旋轉(zhuǎn)180°,得到△BAD.
①求點(diǎn)D的坐標(biāo);
②判斷四邊形ADBC的形狀,并說明理由;
(3)在該拋物線對(duì)稱軸上是否存在點(diǎn)P,使△BMP與△BAD相似?若存在,請(qǐng)直接寫出所有滿足條件的P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖的正方形網(wǎng)格中,每一個(gè)小正方形的邊長為1.格點(diǎn)三角形ABC(頂點(diǎn)是網(wǎng)格線交點(diǎn)的三角形)的頂點(diǎn)A、C的坐標(biāo)分別是(﹣4,6),(﹣1,4).

(1)請(qǐng)?jiān)趫D中的網(wǎng)格平面內(nèi)建立平面直角坐標(biāo)系;
(2)請(qǐng)畫出△ABC關(guān)于x軸對(duì)稱的△A1B1C1;
(3)請(qǐng)?jiān)趛軸上求作一點(diǎn)P,使△PB1C的周長最小,并寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,點(diǎn)E在邊BC上移動(dòng)(點(diǎn)E不與點(diǎn)B,C重合),滿足∠DEF=∠B,且點(diǎn)D、F分別在邊AB、AC上.
(1)求證:△BDE∽△CEF;
(2)當(dāng)點(diǎn)E移動(dòng)到BC的中點(diǎn)時(shí),求證:FE平分∠DFC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】全面兩孩政策實(shí)施后,甲、乙兩個(gè)家庭有了各自的規(guī)劃,假定生男生女的概率相同,回答下列問題:
(1)甲家庭已有一個(gè)男孩,準(zhǔn)備再生一個(gè)孩子,則第二個(gè)孩子是女孩的概率是
(2)乙家庭沒有孩子,準(zhǔn)備生兩個(gè)孩子,求至少有一個(gè)孩子是女孩的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將△ABC沿著過AB中點(diǎn)D的直線折疊,使點(diǎn)A落在BC邊上的A1處,稱為第1次操作,折痕DE到BC的距離記為h1;還原紙片后,再將△ADE沿著過AD中點(diǎn)D1的直線折疊,使點(diǎn)A落在DE邊上的A2處,稱為第2次操作,折痕D1E1到BC的距離記為h2;按上述方法不斷操作下去…,經(jīng)過第2015次操作后得到的折痕D2014E2014到BC的距離記為h2015 . 若h1=1,則h2015的值為(
A.
B.
C.1﹣
D.2﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),設(shè)點(diǎn)P(1,t)在反比例函數(shù)y= 的圖象上,過點(diǎn)P作直線l與x軸平行,點(diǎn)Q在直線l上,滿足QP=OP.若反比例函數(shù)y= 的圖象經(jīng)過點(diǎn)Q,則k=

查看答案和解析>>

同步練習(xí)冊答案