【題目】如圖,RtABC中,∠ABC=90°,以AB為直徑作⊙O,點(diǎn)D為⊙O上一點(diǎn),且CD=CB、連接DO并延長(zhǎng)交CB的延長(zhǎng)線于點(diǎn)E.

(1)判斷直線CD與⊙O的位置關(guān)系,并說(shuō)明理由;

(2)若BE=4,DE=8,求AC的長(zhǎng).

【答案】(1)相切,證明見(jiàn)解析;(2)6.

【解析】

1)欲證明CD是切線,只要證明ODCD,利用全等三角形的性質(zhì)即可證明;

(2)設(shè)⊙O的半徑為r.在RtOBE中,根據(jù)OE2=EB2+OB2,可得(8﹣r)2=r2+42,推出r=3,由tanE=,推出,可得CD=BC=6,再利用勾股定理即可解決問(wèn)題.

(1)相切,理由如下,

如圖,連接OC,

CB=CD,CO=CO,OB=OD,

∴△OCB≌△OCD,

∴∠ODC=OBC=90°,

ODDC,

DC是⊙O的切線;

(2)設(shè)⊙O的半徑為r,

RtOBE中,∵OE2=EB2+OB2

(8﹣r)2=r2+42,

r=3,AB=2r=6,

tanE=,

CD=BC=6,

RtABC中,AC=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,中的一條射線,點(diǎn)在邊上,,交于點(diǎn),于點(diǎn)于點(diǎn),于點(diǎn),連接于點(diǎn)

求證:四邊形為矩形;

,試探究的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(3,6)、B(9,一3),以原點(diǎn)O為位似中心,相似比為,把ABO縮小,則點(diǎn)A的對(duì)應(yīng)點(diǎn)A的坐標(biāo)是

A.(1,2)

B.(9,18)

C.(9,18)或(9,18)

D.(1,2)或(1,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀理解:如圖,在四邊形的邊上任取一點(diǎn)(點(diǎn)不與、重合),分別連接,可以把四邊形分成三個(gè)三角形,如果其中有兩個(gè)三角形相似,我們就把叫做四邊形的邊上的相似點(diǎn):如果這三個(gè)三角形都相似,我們就把叫做四邊形的邊上的強(qiáng)相似點(diǎn).解決問(wèn)題:

如圖,,試判斷點(diǎn)是否是四邊形的邊上的相似點(diǎn),并說(shuō)明理由;

如圖,在矩形中,、、、四點(diǎn)均在正方形網(wǎng)格(網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)為)的格點(diǎn)(即每個(gè)小正方形的頂點(diǎn))上,試在圖②中畫(huà)出矩形的邊上的強(qiáng)相似點(diǎn);

如圖,將矩形沿折疊,使點(diǎn)落在邊上的點(diǎn)處,若點(diǎn)恰好是四邊形的邊上的一個(gè)強(qiáng)相似點(diǎn),試探究的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系中,先描出點(diǎn),點(diǎn).

1)描出點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn)的位置,寫(xiě)出的坐標(biāo) ;

2)用尺規(guī)在軸上找一點(diǎn),使的值最。ūA糇鲌D痕跡);

3)用尺規(guī)在軸上找一點(diǎn),使(保留作圖痕跡).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖ABC內(nèi)接于⊙O,B=60°,CD是⊙O的直徑,點(diǎn)PCD延長(zhǎng)線上一點(diǎn),且AP=AC.

(1)求證:PA是⊙O的切線;

(2)若PD=,求⊙O的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】Rt△ABC中,ACB=90°,A=30°,BDABC的角平分線, DEAB于點(diǎn)E

1)如圖1,連接EC,求證:EBC是等邊三角形;

2)點(diǎn)M是線段CD上的一點(diǎn)(不與點(diǎn)CD重合),以BM為一邊,在BM的下方作BMG=60°,MGDE延長(zhǎng)線于點(diǎn)G.請(qǐng)你在圖2中畫(huà)出完整圖形,并直接寫(xiě)出MD,DGAD之間的數(shù)量關(guān)系;

3)如圖3,點(diǎn)N是線段AD上的一點(diǎn),以BN為一邊,在BN的下方作BNG=60°,NGDE延長(zhǎng)線于點(diǎn)G,且MB=MG.試探究ND,DGAD數(shù)量之間的關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知的半徑,過(guò)的中點(diǎn)的垂線交于點(diǎn),,以下結(jié)論:

;②;③;④;⑤,

正確的是________.(填序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是菱形的對(duì)角線、的交點(diǎn),分別是、的中點(diǎn).下列結(jié)論:①②四邊形也是菱形;③四邊形的面積為;是軸對(duì)稱(chēng)圖形.其中正確的結(jié)論有(

A. 5個(gè) B. 4個(gè) C. 3個(gè) D. 2個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案