【題目】材料:在學(xué)習(xí)絕對(duì)值時(shí),老師教過我們絕對(duì)值的幾何含義,表示、在數(shù)軸上對(duì)應(yīng)的兩點(diǎn)之間的距離;,所以表示、在數(shù)軸上對(duì)應(yīng)的兩點(diǎn)之間的距離;,所以表示在數(shù)軸上對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離,一般地,點(diǎn)、在數(shù)軸上分別表示有理數(shù)、,那么、之間的距離可表示為.
()點(diǎn)、、在數(shù)軸上分別表示有理數(shù)、、,那么到的距離表示為______________________________(用含絕對(duì)值的式子表示).如果,那么為______________________________.
()利用數(shù)軸探究:
①找出滿足的的所有整數(shù)值是____________________;
②設(shè),當(dāng)的值取在不小于且不大于的范圍時(shí),的值是不變的,而且是的最小值,這個(gè)最小值是____________________;
()求的最小值為____________________,此時(shí)的值為____________________.
【答案】(1)|x+2|,-4或0;(2)①-2,4;②2;(3)4,2
【解析】
(1)根據(jù)兩點(diǎn)間的距離公式,可得答案;
(2)①根據(jù)兩點(diǎn)間的距離公式,分三種情況分析;
②根據(jù)當(dāng)x的值取在不小于1且不大于3的范圍時(shí)有最小值,化簡(jiǎn)即可求出p的值;
(3) |x-3|+|x-2|+|x+1|=(|x-3|+|x+1|)+|x-2|,根據(jù)問題(2)中的②可知,要使|x-3|+|x+1|的值最小,x的值只要取-1到3之間(包括-1、3)的任意一個(gè)數(shù),要使|x-2|的值最小,x應(yīng)取2,顯然當(dāng)x=2時(shí)能同時(shí)滿足要求,把x=2代入原式計(jì)算即可;
(1)A到B的距離表示為:|x-(-2)|=|x+2|,
|AB|=2即|x+2|=2,∴x=-4或x=0.
(2)①根據(jù)絕對(duì)值的幾何含義可得,|x-3|+|x+1|表示數(shù)軸上x與3的距離與x與-1的距離之和,
若x<-1,則3-x+(-x-1)=6,即x=-2;
若-1≤x≤3,則3-x+x+1=6,方程無解,舍去;
若x>3,則x-3+x+1=6,即x=4,
∴滿足|x-3|+|x+1|=6的x的所有值是-2,4;
②當(dāng)x的值取在不小于1且不大于3的范圍時(shí),p的值是不變的,而且是p的最小值.
|x3|+|x+1|=3-x+x+3=4,
即p=4,則這個(gè)最小值是4;
(3)|x-3|+|x-2|+|x+1|=(|x-3|+|x+1|)+|x-2|,根據(jù)問題(2)中的②可知,要使|x-3|+|x+1|的值最小,x的值只要取-1到3之間(包括-1、3)的任意一個(gè)數(shù),要使|x-2|的值最小,x應(yīng)取2,當(dāng)x=2時(shí)能同時(shí)滿足要求,把x=2代入,原式=1+0+3=4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,一副直角三角板和,,將和放置如圖2的位置,點(diǎn)、、、在同一直線上。
(1)如圖3,固定不動(dòng),繞點(diǎn)逆時(shí)針旋轉(zhuǎn)時(shí),判斷與的位置關(guān)系,并說明理由。
(2)在圖2的位置上,繞點(diǎn)逆時(shí)針旋轉(zhuǎn),在旋轉(zhuǎn)過程中,兩個(gè)三角形的邊是否存在垂直關(guān)系?若存在直接寫出旋轉(zhuǎn)的角度,并寫出哪兩邊垂直,若不存在,請(qǐng)說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形中,,,動(dòng)點(diǎn)從出發(fā),以每秒1個(gè)單位的速度沿射線方向移動(dòng),作關(guān)于直線的對(duì)稱,設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為.
(1)當(dāng)時(shí).
①如圖2.當(dāng)點(diǎn)落在上時(shí),顯然是直角三角形,求此時(shí)的值;
②當(dāng)點(diǎn)不落在上時(shí),請(qǐng)直接寫出是直角三角形時(shí)的值;
(2)若直線與直線相交于點(diǎn),且當(dāng)時(shí),.問:當(dāng),的大小是否發(fā)生變化,若不變,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四張撲克牌(方塊2、黑桃4、黑桃5、梅花5)的牌面如圖l,將撲克牌洗勻后,如圖2背面朝上放置在桌面上.小亮和小明設(shè)計(jì)的游戲規(guī)則是兩人同時(shí)抽取一張撲克牌,兩張牌面數(shù)字之和為奇數(shù)時(shí),小亮獲勝;否則小明獲勝.請(qǐng)問這個(gè)游戲規(guī)則公平嗎?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】出租車司機(jī)小王某天下午營(yíng)運(yùn)是在東西走向的大街上進(jìn)行的,如果規(guī)定向東為正,向西為負(fù),他這天下午行車?yán)锍?單位:千米)如下:
+15,-2,+5,-1,+10,-3,-2,+12,+4,-5,+6.
(1)將最后一名乘客送到目的地時(shí),小王距下午出車時(shí)的出發(fā)點(diǎn)多遠(yuǎn)?
(2)若汽車耗油量為0.05升/千米,這天下午小王的汽車共耗油多少升?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】.如圖,矩形ABCD中,O為AC中點(diǎn),過點(diǎn)O的直線分別與AB、CD交于點(diǎn)E、F,連結(jié)BF交AC于點(diǎn)M,連結(jié)DE、BO.若∠COB=60°,FO=FC,則下列結(jié)論:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE:S△BCM=2:3.其中正確結(jié)論的個(gè)數(shù)是( )
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1∥l2∥l3,一等腰直角三角形ABC的三個(gè)頂點(diǎn)A、B、C分別在l1、l2、l3上,AC交l2于D,∠ACB=90°.已知l1與l2的距離為2,l2與l3的距離為6,則的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖E、F分別在正方形ABCD的邊BC、CD上,且∠EAF=45°.
(1)求證:EF=BE+DF;
(2)若線段EF、AB的長(zhǎng)分別是方程x2﹣5x+6=0的兩個(gè)根,求△AEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解同學(xué)們的身體發(fā)育情況,學(xué)校體衛(wèi)辦公室對(duì)七年級(jí)全體學(xué)生進(jìn)行了身高測(cè)量(精確到1cm),并從中抽取了部分?jǐn)?shù)據(jù)進(jìn)行統(tǒng)計(jì),請(qǐng)根據(jù)尚未完成的頻數(shù)分布表和頻數(shù)分布直方圖解答下列問題:
頻率分布表
分組 | 頻數(shù) | 百分比 |
144.5~149.5 | 2 | 4% |
149.5~154.5 | 3 | 6% |
154.5~159.5 | a | 16% |
159.5~164.5 | 17 | 34% |
164.5~169.5 | b | n% |
169.5~174.5 | 5 | 10% |
174.5~179.5 | 3 | 6% |
(1)求a、b、n的值;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)學(xué)校準(zhǔn)備從七年級(jí)學(xué)生中選拔護(hù)旗手,要求身高不低于170cm,如果七年級(jí)有學(xué)生350人,護(hù)旗手的候選人大概有多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com