【題目】如圖,在△ABC中,AB=AC,D為BC中點,AE∥BD,且AE=BD.
(1)求證:四邊形AEBD是矩形;
(2)連接CE交AB于點F,若BE=2,AE=2,求EF的長.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠ABC=90°,AC=AD,M,N分別為AC,AD的中點,
且∠ABM=∠BAM,連接BM,MN,BN.
(1)求證:BM=MN;
(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,點,,分別是邊,,上的點,且,,相交于點,若點是的重心.則以下結(jié)論:①線段,,是的三條角平分線;②的面積是面積的一半;③圖中與面積相等的三角形有5個;④的面積是面積的.其中一定正確的結(jié)論有( )
A.①②③B.②④C.③④D.②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C是⊙O上一點,過點C的直線交AB的延長線于點D,AE⊥DC,垂足為E,F(xiàn)是AE與⊙O的交點,AC平分∠BAE.
(1)求證:DE是⊙O的切線;
(2)若AE=6,∠D=30°,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(2016浙江省衢州市)如圖1,在直角坐標系xoy中,直線l:y=kx+b交x軸,y軸于點E,F,點B的坐標是(2,2),過點B分別作x軸、y軸的垂線,垂足為A、C,點D是線段CO上的動點,以BD為對稱軸,作與△BCD或軸對稱的△BC′D.
(1)當∠CBD=15°時,求點C′的坐標.
(2)當圖1中的直線l經(jīng)過點A,且時(如圖2),求點D由C到O的運動過程中,線段BC′掃過的圖形與△OAF重疊部分的面積.
(3)當圖1中的直線l經(jīng)過點D,C′時(如圖3),以DE為對稱軸,作于△DOE或軸對稱的△DO′E,連結(jié)O′C,O′O,問是否存在點D,使得△DO′E與△CO′O相似?若存在,求出k、b的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,過點C的直線MN∥AB,D為AB邊上一點,過點D作DE⊥BC,交直線MN于E,垂足為F,連接CD,BE.
(1)求證:CE=AD;
(2)當D為AB中點時,四邊形BECD是什么特殊四邊形?說明你的理由;
(3)若D為AB中點,則當∠A的大小滿足什么條件時,四邊形BECD是正方形?請說明你的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(感知)如圖①在等邊△ABC和等邊△ADE中,連接BD,CE,易證:△ABD≌△ACE;
(探究)如圖②△ABC與△ADE中,∠BAC=∠DAE,∠ABC=∠ADE,求證:△ABD∽△ACE;
(應(yīng)用)如圖③,點A的坐標為(0,6),AB=BO,∠ABO=120°,點C在x軸上運動,在坐標平面內(nèi)作點D,使AD=CD,∠ADC=120°,連結(jié)OD,則OD的最小值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了改善辦公條件,計劃從廠家購買A、B兩種型號電腦。已知每臺A種型號電腦價格比每臺B種型號電腦價格多0.1萬元,且用10萬元購買A種型號電腦的數(shù)量與用8萬元購買B種型號電腦的數(shù)量相同.
(1)求A、B兩種型號電腦每臺價格各為多少萬元?
(2)學校預(yù)計用不多于9.2萬元的資金購進這兩種電腦共20臺,則最多可購買A種型號電腦多少臺?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC,(1)如圖①,若P點是∠ABC和∠ACB的角平分線的交點,則∠P=90°+∠A;(2)如圖②,若P點是∠ABC和外角∠ACE的角平分線的交點,則∠P=90°-∠A;(3)如圖③,若P點是外角∠CBF和∠BCE的角平分線的交點,則∠P=90°-∠A.上述說法正確的個數(shù)是( )
A. 0個B. 1個C. 2個D. 3個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com