【題目】已知△ABC,(1)如圖①,若P點是∠ABC和∠ACB的角平分線的交點,則∠P=90°+∠A;(2)如圖②,若P點是∠ABC和外角∠ACE的角平分線的交點,則∠P=90°-∠A;(3)如圖③,若P點是外角∠CBF和∠BCE的角平分線的交點,則∠P=90°-∠A.上述說法正確的個數(shù)是( )
A. 0個B. 1個C. 2個D. 3個
【答案】C
【解析】
根據(jù)三角形的內(nèi)角和外角之間的關(guān)系計算.
解:(1)∵若P點是∠ABC和∠ACB的角平分線的交點,
∴∠ABP=∠PBC,∠ACP=∠PCB
∵∠A=180°-∠ABC-∠ACB=180°-2(∠PBC+∠PCB)
∠P=180°-(∠PBC+∠PCB)
∴∠P=90°+∠A;
故(1)的結(jié)論正確;
(2)∵∠A=∠ACB-∠ABC=2∠PCE-2∠PBC=2(∠PCE-∠PBC)
∠P=∠PCE-∠PBC
∴2∠P=∠A
故(2)的結(jié)論是錯誤.
(3)∠P=180°-(∠PBC+∠PCB)
=180°-(∠FBC+∠ECB)
=180°-(∠A+∠ACB+∠A+∠ABC)
=180°-(∠A+180°)
=90°-∠A.
故(3)的結(jié)論正確.
正確的為:(1)(3).
故選:C
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D為BC中點,AE∥BD,且AE=BD.
(1)求證:四邊形AEBD是矩形;
(2)連接CE交AB于點F,若BE=2,AE=2,求EF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形的頂點在坐標原點,頂點、分別在、軸的正半軸上,頂點在反比例函數(shù)(為常數(shù),,)的圖象上,將矩形繞點按逆時針方向旋轉(zhuǎn)得到矩形,若點的對應(yīng)點恰好落在此反比例函數(shù)圖象上,則的值是__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(問題情境)一節(jié)數(shù)學課后,老師布置了一道課后練習題:
如圖:已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于點D,點E、F分別在A和BC上,∠1=∠2,FG⊥AB于點G,求證:△CDE≌△EGF.
(1)閱讀理解,完成解答
本題證明的思路可用下列框圖表示:
根據(jù)上述思路,請你完整地書寫這道練習題的證明過程;
(2)特殊位置,證明結(jié)論
若CE平分∠ACD,其余條件不變,求證:AE=BF;
(3)知識遷移,探究發(fā)現(xiàn)
如圖,已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于點D,若點E是DB的中點,點F在直線CB上且滿足EC=EF,請直接寫出AE與BF的數(shù)量關(guān)系.(不必寫解答過程)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,已知 AD 是△ABC 的邊 BC 上的中線.
(1)作出△ABD 的邊 BD 上的高.
(2)若△ABC 的面積為 10,求△ADC 的面積.
(3)若△ABD 的面積為 6,且 BD 邊上的高為 3,求 BC 的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,以直線為對稱軸的拋物線與直線交于,兩點,與軸交于,直線與軸交于點.
(1)求拋物線的函數(shù)表達式;
(2)設(shè)直線與拋物線的對稱軸的交點為,是拋物線上位于對稱軸右側(cè)的一點,若,且與的面積相等,求點的坐標;
(3)若在軸上有且只有一點,使,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖有一張簡易的活動小餐桌,現(xiàn)測得OA=OB=30cm,OC=OD=50cm,桌面離地面的高度為40cm,則兩條桌腿的張角∠COD的度數(shù)為______度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,線段AB 是⊙O的直徑,弦CD⊥AB于點H,點M是弧CBD 上任意一點,AH=2,CH=4.
(1)求⊙O 的半徑r 的長度;
(2)求sin∠CMD;
(3)直線BM交直線CD于點E,直線MH交⊙O 于點 N,連接BN交CE于點 F,求HEHF的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com