【題目】有下列命題:①兩條直線被第三條直線所截,同位角相等;②0.1的算術(shù)平方根是0.01;③算術(shù)平方根等于它本身的數(shù)是1;④如果點(diǎn)P(3-2n,1)到兩坐標(biāo)軸的距離相等,則n=1;⑤若a2=b2,則a=b;⑥若=,則a=b.其中假命題的個(gè)數(shù)是( 。
A. 3個(gè)B. 4個(gè)C. 5個(gè)D. 6個(gè)
【答案】C
【解析】
利用平行線的性質(zhì)、算術(shù)平方根的定義、點(diǎn)的坐標(biāo)等知識(shí)分別判斷后即可確定假命題的個(gè)數(shù).
①兩條平行直線被第三條直線所截,同位角相等,故錯(cuò)誤,是假命題;
②0.1 的算術(shù)平方根是0.01,錯(cuò)誤,是假命題;
③算術(shù)平方根等于它本身的數(shù)是1和0,故錯(cuò)誤,是假命題;
④如果點(diǎn)P(3-2n,1)到兩坐標(biāo)軸的距離相等,則n=1或2,故錯(cuò)誤,是假命題;
⑤若a2=b2,則a=±b,故錯(cuò)誤,是假命題;
⑥若=,則a=b,正確,是真命題,
假命題有5個(gè),故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】幾何計(jì)算:
如圖,已知∠AOB=40°,∠BOC=3∠AOB,OD平分∠AOC,求∠COD的度數(shù).
解:因?yàn)?/span>∠BOC=3∠AOB,∠AOB=40°
所以∠BOC=__________°
所以∠AOC=__________ + _________
=__________° + __________°
=__________°
因?yàn)?/span>OD平分∠AOC
所以∠COD=__________=__________°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,O是邊AC上一點(diǎn),以O(shè)為圓心,OA為半徑的圓分別交AB,AC于點(diǎn)E,D,在BC的延長(zhǎng)線上取點(diǎn)F,使得BF=EF,EF與AC交于點(diǎn)G.
(1)試判斷直線EF與⊙O的位置關(guān)系,并說明理由;
(2)若OA=2,∠A=30°,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把一塊等腰直角三角形零件(△ABC,其中∠ACB=90°),放置在一凹槽內(nèi),三個(gè)頂點(diǎn)A,B,C分別落在凹槽內(nèi)壁上,已知∠ADE=∠BED=90°,測(cè)得AD=5cm,BE=7cm,求該三角形零件的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知數(shù)軸上點(diǎn)A表示的數(shù)為-3,B是數(shù)軸上位于點(diǎn)A右側(cè)一點(diǎn),且AB=12.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向點(diǎn)B方向勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)數(shù)軸上點(diǎn)B表示的數(shù)為______;點(diǎn)P表示的數(shù)為______(用含t的代數(shù)式表示).
(2)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向點(diǎn)A方向勻速運(yùn)動(dòng);點(diǎn)P、點(diǎn)Q同時(shí)出發(fā),當(dāng)點(diǎn)P與點(diǎn)Q重合后,點(diǎn)P馬上改變方向,與點(diǎn)Q繼續(xù)向點(diǎn)A方向勻速運(yùn)動(dòng)(點(diǎn)P、點(diǎn)Q在運(yùn)動(dòng)過程中,速度始終保持不變);當(dāng)點(diǎn)P到達(dá)A點(diǎn)時(shí),P、Q停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒.
①當(dāng)點(diǎn)P與點(diǎn)Q重合時(shí),求t的值,并求出此時(shí)點(diǎn)P表示的數(shù).
②當(dāng)點(diǎn)P是線段AQ的三等分點(diǎn)時(shí),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在平面直角坐標(biāo)系中,二次函數(shù)y=﹣ x2+bx+c的圖象與坐標(biāo)軸交于A,B,C三點(diǎn),其中點(diǎn)A的坐標(biāo)為(﹣3,0),點(diǎn)B的坐標(biāo)為(4,0),連接AC,BC.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),在線段AC上以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)C作勻速運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),在線段OB上以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)B作勻速運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.連接PQ.
(1)填空:b= , c=;
(2)在點(diǎn)P,Q運(yùn)動(dòng)過程中,△APQ可能是直角三角形嗎?請(qǐng)說明理由;
(3)在x軸下方,該二次函數(shù)的圖象上是否存在點(diǎn)M,使△PQM是以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形?若存在,請(qǐng)求出運(yùn)動(dòng)時(shí)間t;若不存在,請(qǐng)說明理由;
(4)如圖②,點(diǎn)N的坐標(biāo)為(﹣ ,0),線段PQ的中點(diǎn)為H,連接NH,當(dāng)點(diǎn)Q關(guān)于直線NH的對(duì)稱點(diǎn)Q′恰好落在線段BC上時(shí),請(qǐng)直接寫出點(diǎn)Q′的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與x軸交于點(diǎn)和A(﹣1,0)和點(diǎn)B(4,0),與y軸交于點(diǎn)C(0,2).
(1)求拋物線解析式;
(2)點(diǎn)P是拋物線BC段上一點(diǎn),PD⊥BC,PE∥y軸,分別交BC于點(diǎn)D、E.當(dāng)DE= 時(shí),求點(diǎn)P的坐標(biāo);
(3)M是平面內(nèi)一點(diǎn),將符合(2)條件下的△PDE繞點(diǎn)M沿逆時(shí)針方向旋轉(zhuǎn)90°后,點(diǎn)P,D,E的對(duì)應(yīng)點(diǎn)分別是P′、D′、E′.設(shè)P′E′的中點(diǎn)為N,當(dāng)拋物線同時(shí)經(jīng)過D′與N時(shí),求出D′的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xoy中,A(-1,5)、B(-1,0),C(-4,3).
(1)△ABC的面積是 .
(2)在下圖中畫出△ABC向下平移2個(gè)單位,向右平移5個(gè)單位后的△A1B1C1.
(3)寫出點(diǎn)A1、B1、C1的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列敘述:①如果a是非負(fù)數(shù),則;②“減去10不大于2”表示為;③“的倒數(shù)超過10”表示為;④“a,b兩數(shù)的平方和為正數(shù)”表示為;其中正確的個(gè)數(shù)是( )
A. 2 個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com