【題目】李大媽加盟了紅紅全國燒烤連鎖店,該公司的宗旨是薄利多銷,經(jīng)市場調(diào)查發(fā)現(xiàn),當羊肉串的單價定為元時,每天能賣出串,在此基礎(chǔ)上,每加價元李大媽每天就會少賣出串,考慮了所有因素后李大媽的每串羊肉串的成本價為元,若李大媽每天銷售這種羊肉串想獲得利潤是元,那么請問這種羊肉串應怎樣定價?

【答案】這種羊肉串應定價為元.

【解析】

設這種羊肉串定價為x/則每串的利潤為(x-0.5)元,可賣出[160-200(x-0.7)]串,根據(jù)每串的利潤×串數(shù)=總利潤,列方程進行求解即可.

設這種羊肉串定價為x/,由題意得

(x-0.5)[160-200(x-0.7)]=18,

化簡得:25x2-50x+21=0,

解得:x1=0.6,x2=1.4(舍去),

答:這種羊肉串應定價為0.6/

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形的邊長為,正方形的邊長為,則陰影部分的周長為________,面積為________.(精確到

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,,小聰同學利用直尺和圓規(guī)完成了如下操作:

①作的平分線于點;

②作邊的垂直平分線,相交于點

③連接,.

請你觀察圖形解答下列問題:

(1)線段,,之間的數(shù)量關(guān)系是________;

(2)若,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD的對角線AC、BD相交于點O,CE∥BD,DE∥AC,AC=4,則四邊形OCED的周長為(  )

A. 4 B. 8 C. 10 D. 12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,ABCD,1=2,DB=DC.

(1)求證:ABD≌△EDC;

(2)若∠A=135°,BDC=30°,求∠BCE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,

(1)先作的平分線交邊于點,再以點為圓心,長為半徑作

(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)

(2)請你判斷(1)中的位置關(guān)系,并證明你的結(jié)論.

(3)若,求出(1)中的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本題12分)如圖甲,在平面直角坐標系中,直線y=x+8分別交x軸、y軸于點AB,⊙O的半徑為2個單位長度.點P為直線y=x+8上的動點,過點P⊙O的切線PC、PD,切點分別為C、D,且PC⊥PD

1)試說明四邊形OCPD的形狀(要有證明過程);

2)求點P的坐標;

3)如圖乙,若直線y=x+b⊙O的圓周分成兩段弧長之比為13,請直接寫出b的值

4)向右移動⊙O(圓心O始終保持在x軸上),試求出當⊙O與直線y=x+8有交點時圓心O的橫坐標m的取值范圍。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,∠BCA=90°,CD是邊AB上的中線,分別過點CDBABC的平行線,兩線交于點E,且DEAC于點O,連接AE

1)求證:四邊形ADCE是菱形;

2)若∠B=60°BC=6,求四邊形ADCE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖 1,在平面直角坐標系中,直線l1:yx5x軸,y軸分別交于A.B兩點.直線l2:y4xbl1交于點 D(3,8)且與x軸,y軸分別交于CE.

(1)求出點A坐標,直線l2的解析式;

(2)如圖2,點P為線段AD上一點(不含端點),連接CP,一動點QC出發(fā),沿線段CP 以每秒1個單位的速度運動到點P,再沿著線段PD以每秒個單位的速度運動到點D停止,求點Q在整個運動過程中所用最少時間與點P的坐標;

(3)如圖3,平面直角坐標系中有一點G(m2),使得SCEGSCEB,求點G的坐標.

查看答案和解析>>

同步練習冊答案