【題目】如圖,Rt△ABC中,∠ACB=90°,AC=BC=,以AB為斜邊另作Rt△APB,連接PC,當(dāng)點P在AC左側(cè)時,下列結(jié)論正確的是( )
A. 的度數(shù)不確定B.
C. 當(dāng)時,D. 當(dāng)時,
【答案】D
【解析】
因為∠ACB=∠APB=90°,可得A,P,C,B四點共圓,即∠CPB=∠CAB=45°,可得∠APC=∠APB+∠CPB=90°+45°=135°,故選項A錯誤;過點C作CP的垂線交PB于點K,證明△BCK≌△ACP,得AP=BK,所以PB=PC+PA,故選項B錯誤;當(dāng)PA=1時和PA=PC時,結(jié)合PB=PC+PA的關(guān)系式,即可對選項C,D作出判斷.
解:∵∠ACB=∠APB=90°,
∴A,P,C,B四點共圓,
∵AC=BC,
∴∠CAB=45°,
∴∠CPB=∠CAB=45°,
∴∠APC=∠APB+∠CPB=90°+45°=135°,
∴選項A錯誤;
如圖,過點C作CP的垂線交PB于點K,
∵∠CPK=45°,
∴∠CKP=∠CPK=45°,
∴PC=KC,∠CKB=∠CPA=135°,
∵∠PCK=∠ACB=90°,
∴∠BCK=∠ACP,
∴△BCK≌△ACP((ASA),
∴AP=BK,
∵PK=PC,
∴PB=PC+PA,
∴選項B錯誤;
當(dāng)PA=1時,
∵AC=BC=,
∴AB=2,
∴PB== ,
∵PB=PC+PA,
∴=PC+1,
解得PC=,
∴選項C錯誤;
當(dāng)PA=PC時,
PB=(+1)PA,
∵PA2+PB2=AB2,
∴(-1)2PB2+PB2=4,
解得PB2=2+
∴選項D正確.
故選:D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校準(zhǔn)備購買若干臺電腦和打印機(jī),如果購買臺電腦和臺打印機(jī),一共花費元;如果購買臺電腦和臺打印機(jī),一共花費元;
(1)求每臺電腦和每臺打印機(jī)的價格分別是多少元?
(2)如果學(xué)校購買電腦和打印機(jī)的預(yù)算費用不超過元,并且購買打印機(jī)的臺數(shù)要比購買電腦的臺數(shù)多臺,那么該學(xué)校最多能購買多少臺打印機(jī)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程x2+(2k+1)x+k2=0①有兩個不等的實數(shù)根.
⑴求k的取值范圍;
⑵若方程①的兩根的平方和為7,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC=4,P是△ABC的高CD上一個動點,以B點為旋轉(zhuǎn)中心把線段BP逆時針旋轉(zhuǎn)45°得到BP′,連接DP′,則DP′的最小值是( 。
A.2-2B.4﹣2C.2﹣D.-1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形ABCD為菱形,點E、F、G、H分別為各邊中點,判斷E、F、G、H四點是否在同一個圓上,如果在同一圓上,找到圓心,并證明四點共圓;如果不在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于點D,點E在AB上,以AE為直徑的⊙O經(jīng)過點D.
(1)求證:直線BC是⊙O的切線;
(2)若∠B=30°,AC=3,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有三個質(zhì)地、大小都相同的小球分別標(biāo)上數(shù)字2,-2,3后放入一個不透明的口袋攪勻,任意摸出一個小球,記下數(shù)字a后,放回口袋中攪勻,再任意摸出一個小球,又記下數(shù)字b.這樣就得到一個點的坐標(biāo)(a,b).
(1)求這個點(a,b)恰好在函數(shù)y=-x的圖像上的概率.(請用“畫樹狀圖”或“列表”等方法給出分析過程,并求出結(jié)果)
(2)如果再往口袋中增加n(n≥1)個標(biāo)上數(shù)字2的小球,按照同樣的操作過程,所得到的點(a,b)恰好在函數(shù)y=-x的圖像上的概率是 (請用含n的代數(shù)式直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列關(guān)于二次函數(shù)y=-x2-2x+3說法正確的是( 。
A. 當(dāng)時,函數(shù)最大值4
B. 當(dāng)時,函數(shù)最大值2
C. 將其圖象向上平移3個單位后,圖象經(jīng)過原點
D. 將其圖象向左平移3個單位后,圖象經(jīng)過原點
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】初三某班同學(xué)小戴想根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,通過研究一個未學(xué)過的函數(shù)的圖象,從而探究其各方面性質(zhì).
下表是函數(shù)y與自變量x的幾組對應(yīng)值:
x | … | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 9 | 12 | … |
y | … | -4 | 0 | 4 | 8 | 12 | 9 | 7.2 | 6 | 4 | 3 | … |
(1)在平面直角坐標(biāo)系xOy中,每個小正方形的邊長為一個單位長度,描出了以上表中各對對應(yīng)值為坐標(biāo)的點,請根據(jù)描出的點,畫出該函數(shù)的圖象.
(2)請根據(jù)畫出的函數(shù)圖象,直接寫出該函數(shù)的關(guān)系式y=______(請寫出自變量的取值范圍),并寫出該函數(shù)的一條性質(zhì):______.
(3)當(dāng)直線y=-x+b與該函數(shù)圖象有3個交點時,求b的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com