【題目】如圖,在正方形ABCD中,BPC是等邊三角形,BP、CP的延長線分別交AD于點EF,連結(jié)BD、DPBDCF相交于點H.給出下列結(jié)論,其中正確結(jié)論的個數(shù)是(

①△BDE∽△DPE;②;③;④tanDBE=.

A.4B.3C.2D.1

【答案】B

【解析】

根據(jù)等邊三角形的性質(zhì)和正方形的性質(zhì),得到∠PCD=30°,于是得到∠CPD=CDP=75°,證得∠EDP=PBD=15°,于是得到BDE∽△DPE,故①正確由于∠FDP=PBD,∠DFP=BPC=60°,推出DFP∽△BPH,得到故②錯誤;由于∠PDH=PCD=30°,∠DPH=DPC,推出DPH∽△CPD,得到,PB=CD,等量代換得到PD2=PHPB,故③正確;過PPMCD,PNBC,設(shè)正方形ABCD的邊長是4BPC為正三角形,于是得到∠PBC=PCB=60°,PB=PC=BC=CD=4,求得∠PCD=30°,根據(jù)三角函數(shù)的定義得到CM=PN=PBsin60°=4×,PM=PCsin30°=2,由平行線的性質(zhì)得到∠EDP=DPM,等量代換得到∠DBE=DPM,于是求得tanDBE=tanDPM=,故④正確.

∵△BPC是等邊三角形,
BP=PC=BC,∠PBC=PCB=BPC=60°
在正方形ABCD中,
AB=BC=CD,∠A=ADC=BCD=90°
∴∠ABE=DCF=30°,


∴∠CPD=CDP=75°,∴∠PDE=15°,
∵∠PBD=PBC-HBC=60°-45°=15°
∴∠EBD=EDP,
∵∠DEP=DEB,
∴△BDE∽△DPE;故①正確;
PC=CD,∠PCD=30°
∴∠PDC=75°,
∴∠FDP=15°
∵∠DBA=45°,
∴∠PBD=15°,
∴∠FDP=PBD
∵∠DFP=BPC=60°,
∴△DFP∽△BPH
,故②錯誤;
∵∠PDH=PCD=30°
∵∠DPH=DPC,
∴△DPH∽△CDP,

PD2=PHCD,


PB=CD,
PD2=PHPB,故③正確;
如圖,過PPMCD,PNBC,
設(shè)正方形ABCD的邊長是4,BPC為正三角形,
∴∠PBC=PCB=60°,PB=PC=BC=CD=4,
∴∠PCD=30°
CM=PN=PBsin60°=4× ,PM=PCsin30°=2
DEPM,
∴∠EDP=DPM
∴∠DBE=DPM,
tanDBE=tanDPM= ,故④正確;
故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:我們知道,四邊形的一條對角線把這個四邊形分成兩個三角形,如果這兩個三角形相似但不全等,我們就把這條對角線叫做這個四邊形的相似對角線,在四邊形ABCD中,對角線BD是它的相似對角線,∠ABC=70°,BD平分∠ABC,那么∠ADC=____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】五一假期,黔西南州某公司組織部分員工分別到甲、乙、丙、丁四地考察,公司按定額購買了前往各地的車票,如圖所示是用來制作完整的車票種類和相應(yīng)數(shù)量的條形統(tǒng)計圖,根據(jù)統(tǒng)計圖回答下列問題:

1)若去丁地的車票占全部車票的10%,請求出去丁地的車票數(shù)量,并補全統(tǒng)計圖(如圖所示).

2)若公司采用隨機抽取的方式發(fā)車票,小胡先從所有的車票中隨機抽取一張(所有車票的形狀、大小、質(zhì)地完全相同、均勻),那么員工小胡抽到去甲地的車票的概率是多少?

3)若有一張車票,小王和小李都想去,決定采取摸球的方式確定,具體規(guī)則:每人從不透明袋子中摸出分別標(biāo)有1、23、4的四個球中摸出一球(球除數(shù)字不同外完全相同),并放回讓另一人摸,若小王摸得的數(shù)字比小李的小,車票給小王,否則給小李.試用列表法或畫樹狀圖的方法分析這個規(guī)則對雙方是否公平?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】給定關(guān)于x的二次函數(shù)ykx24kx+3k0),

1)當(dāng)該二次函數(shù)與x軸只有一個公共點時,求k的值;

2)當(dāng)該二次函數(shù)與x軸有2個公共點時,設(shè)這兩個公共點為AB,已知AB2,求k的值;

3)由于k的變化,該二次函數(shù)的圖象性質(zhì)也隨之變化,但也有不會變化的性質(zhì),某數(shù)學(xué)學(xué)習(xí)小組在探究時得出以下結(jié)論:

y軸的交點不變;對稱軸不變;一定經(jīng)過兩個定點;

請判斷以上結(jié)論是否正確,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線ABx軸上的點A2,0),且與拋物線yax2相交于B、C兩點,B點坐標(biāo)為(1,1).

1)求直線AB和拋物線的函數(shù)關(guān)系式;

2)在拋物線上是否存在一點D,使得SOADSOBC?若不存在,請說明理由;若存在,請求出點D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,點C在⊙O上,過點C的直線與AB的延長線交于點P, ACPC,∠COB2PCB

1)求證:PC是⊙O的切線;

2)求證:BCAB

3)點M是弧AB的中點,CMAB于點N,若AB8,求MN·MC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某種商品的標(biāo)價為600/件,經(jīng)過兩次降價后的價格為486/件,并且兩次降價的百分率相同.

(1)求該種商品每次降價的百分率;

(2)若該種商品進價為460/件,兩次降價共售出此種商品100件,為使兩次降價銷售的總利潤不少于3788.問第一次降價后至少要售出該種商品多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=﹣x+4與坐標(biāo)軸分別交于點A、B,與直線yx交于點C.在線段OA上,動點Q以每秒1個單位長度的速度從點O出發(fā)向點A做勻速運動,同時動點P從點A出發(fā)向點O做勻速運動,當(dāng)點P、Q其中一點停止運動時,另一點也停止運動.分別過點PQx軸的垂線,交直線ABOC于點E、F,連接EF.若運動時間為t秒,在運動過程中四邊形PEFQ總為矩形(點P、Q重合除外).

1)求點P運動的速度是多少?

2)當(dāng)t為多少秒時,矩形PEFQ為正方形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:拋物線yax+1)(x3)與x軸相交于AB兩點,與y軸的交于點C0,﹣3).

1)求拋物線的解析式的一般式.

2)若拋物線上有一點P,滿足∠ACO=∠PCB,求P點坐標(biāo).

3)直線lykxk+2與拋物線交于E、F兩點,當(dāng)點B到直線l的距離最大時,求BEF的面積.

查看答案和解析>>

同步練習(xí)冊答案