【題目】如圖,直線ABx軸上的點A2,0),且與拋物線yax2相交于B、C兩點,B點坐標為(1,1).

1)求直線AB和拋物線的函數(shù)關(guān)系式;

2)在拋物線上是否存在一點D,使得SOADSOBC?若不存在,請說明理由;若存在,請求出點D的坐標.

【答案】1a1,yx2;2D坐標為

【解析】

1)已知直線AB經(jīng)過A2,0),B1,1),設(shè)直線表達式為y=ax+b,可求直線解析式;將B11)代入拋物線y=ax2可求拋物線解析式;

2)已知AB,C三點坐標,根據(jù)作差法可求△OBC的面積,在△DOA中,已知面積和底OA,可求OA上的高,即D點縱坐標,代入拋物線解析式求橫坐標,得出D點坐標.

解:(1)設(shè)直線AB關(guān)系式為ykx+bA2,0),B11)都在直線ykx+b的圖象上,

解得

直線AB關(guān)系式為y=﹣x+2,

B1,1)在yax2的圖象上,

a1,其關(guān)系式為yx2;

2)如圖,存在點D,設(shè)Dxx2),

由題意得,

解得,

C(﹣2,4),

,

SBOCSOAD,

x23,

解得,

D坐標為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC內(nèi)接與⊙O,AB是直徑,⊙O的切線PCBA的延長線于點POF∥BCACACE,交PC于點F,連接AF

1)判斷AF⊙O的位置關(guān)系并說明理由;

2)若⊙O的半徑為4,AF=3,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形ABCD中,E,F分別是AB,AD邊上的點,DECF交于點G.

(1)如圖①,若四邊形ABCD是矩形,且DECF,求證: ;

(2)如圖②,若四邊形ABCD是平行四邊形,試探究:當(dāng)∠B與∠EGC滿足什么關(guān)系時,使得成立?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖直線與雙曲線交于,兩點,則的值(

A. -5B. -10C. 5D. 10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將邊長為的正方形ABCD繞點A逆時針方向旋轉(zhuǎn)30°后得到正方形ABCD

1)求證:EDEB;

2)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,BPC是等邊三角形,BPCP的延長線分別交AD于點E、F,連結(jié)BD、DP,BDCF相交于點H.給出下列結(jié)論,其中正確結(jié)論的個數(shù)是(

①△BDE∽△DPE;②;③;④tanDBE=.

A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,對稱軸為直線x=1.分析下列5個結(jié)論:①2c<3b;②若0<x<3,則ax2+bx+c>0;③;④k為實數(shù));⑤(m為實數(shù)).其中正確的結(jié)論個數(shù)有( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與軸交于點,對稱軸為直線,,下列結(jié)論:①;②9a+3b+c=0;③若點,點是此函數(shù)圖象上的兩點,則;④.其中正確的個數(shù)(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個不透明的袋子里有1個紅球,1個黃球和n個白球,它們除顏色外其余都相同.

(1)從這個袋子里摸出一個球,記錄其顏色,然后放回,搖均勻后,重復(fù)該實驗,經(jīng)過大量實驗后,發(fā)現(xiàn)摸到白球的頻率穩(wěn)定于0.5左右,求n的值;

(2)在(1)的條件下,先從這個袋中摸出一個球,記錄其顏色,放回,搖均勻后,再從袋中摸出一個球,記錄其顏色.請用畫樹狀圖或者列表的方法,求出先后兩次摸出不同顏色的兩個球的概率.

查看答案和解析>>

同步練習(xí)冊答案