【題目】如圖,直線y=﹣2x+8與兩坐標(biāo)軸分別交于PQ兩點(diǎn),在線段PQ上有一點(diǎn)A,過(guò)A點(diǎn)分別作兩坐標(biāo)軸的垂線,垂足分別為B、C

1)若矩形ABOC的面積為5,求A點(diǎn)坐標(biāo).

2)若點(diǎn)A在線段PQ上移動(dòng),求矩形ABOC面積的最大值.

【答案】(1)A點(diǎn)的坐標(biāo)是(,4 )或(,4+);(2矩形ABOC的最大值是8

【解析】試題分析:(1)設(shè)Ax,﹣2x+8),根據(jù)矩形ABOC的面積為5得出方程x﹣2x+8=5,求出方程的解即可;

2)設(shè)Ax﹣2x+8),矩形ABOC面積是S,根據(jù)矩形面積公式得出S=x﹣2x+8),求出函數(shù)的最值即可.

試題解析:解:(1)設(shè)Ax2x+8),矩形ABOC的面積為5x2x+8=5,解得:x1=,x2=,y1=y2=,即A點(diǎn)的坐標(biāo)是( )或(, );

2)設(shè)Ax,﹣2x+8),矩形ABOC面積是S,則S=x﹣2x+8=﹣2x﹣22+8a=﹣20,有最大值,當(dāng)x=2時(shí),S的最大值是8,即矩形ABOC的最大值是8

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,ABCD,A = D,試說(shuō)明 ACDE 成立的理由.

下面是彬彬同學(xué)進(jìn)行的推理,請(qǐng)你將彬彬同學(xué)的推理過(guò)程補(bǔ)充完整。

解:∵ AB CD (已知)

A = (兩直線平行,內(nèi)錯(cuò)角相等)

又∵ A = D( )

= (等量代換)

AC DE ( )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】a-1與-2互為相反數(shù),則 a =_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)長(zhǎng)8 厘米,寬6厘米的長(zhǎng)方形中,剪下一個(gè)最大的圓,這個(gè)圓的面積是( )平方厘米.

A.18.84B.28.26C.25.12D.50.24

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)第1次用39萬(wàn)元購(gòu)進(jìn)A、B兩種商品,銷(xiāo)售完后獲得利潤(rùn)6萬(wàn)元,它們的進(jìn)價(jià)和售價(jià)如下表:(總利潤(rùn)=單件利潤(rùn)×銷(xiāo)售量)

商品

價(jià)格

A

B

進(jìn)價(jià)(元/件)

1200

1000

售價(jià)(元/件)

1350

1200

(1)該商場(chǎng)第1次購(gòu)進(jìn)A、B兩種商品各多少件?

(2)商場(chǎng)第2次以原價(jià)購(gòu)進(jìn)A、B兩種商品,購(gòu)進(jìn)A商品的件數(shù)不變,而購(gòu)進(jìn)B商品的件數(shù)是第1次的2倍,A商品按原價(jià)銷(xiāo)售,而B(niǎo)商品打折銷(xiāo)售,若兩種商品銷(xiāo)售完畢,要使得第2次經(jīng)營(yíng)活動(dòng)獲得利潤(rùn)等于54000元,則B種商品是打幾折銷(xiāo)售的

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列多項(xiàng)式的乘法中,能用平方差公式計(jì)算的是( )

A. (-m +n)(m - n) B. a +b)(b -a)

C. (x + 5)(x + 5) D. (3a -4b)(3b +4a)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把幾個(gè)圖形拼成一個(gè)新的圖形,再通過(guò)圖形面積的計(jì)算,常常可以得到一些有用的信息,或可以求出一些不規(guī)則圖形的面積.

(1)如圖1所示,將一張長(zhǎng)方形紙板按圖中虛線裁剪成九塊,其中有兩塊是邊長(zhǎng)都為m的大正方形,兩塊是邊長(zhǎng)都為n的小正方形,五塊是長(zhǎng)為m,寬為n的全等小長(zhǎng)方形,且m>n.觀察圖形,可以發(fā)現(xiàn)代數(shù)式2m2+5mn+2n2可以因式分解為 .

(2)若圖1中每塊小長(zhǎng)方形的面積為12cm2,四個(gè)正方形的面積和為50 cm2,試求圖中所有裁剪線(虛線部分)長(zhǎng)之和.

(3)將圖2中邊長(zhǎng)為ab的正方形拼在一起,B,C,G三點(diǎn)在同一條直線上,連接BDBF,若這兩個(gè)正方形的邊長(zhǎng)滿(mǎn)足a+b=10,ab=16,請(qǐng)求出陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有A、BC三個(gè)居民小區(qū)的位置成三角形,現(xiàn)決定在三個(gè)小區(qū)之間修建一個(gè)購(gòu)物超市,使超市到三個(gè)小區(qū)的距離相等,則超市應(yīng)建在( )

A. AC、BC兩邊高線的交點(diǎn)處

B. ACBC兩邊中線的交點(diǎn)處

C. AC、BC兩邊垂直平分線的交點(diǎn)處

D. ∠A、∠B兩內(nèi)角平分線的交點(diǎn)處

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一種電視機(jī)原價(jià)每臺(tái)2600元,國(guó)慶期間以九五折出售,并且商家規(guī)定滿(mǎn)2000元返200元.若購(gòu)買(mǎi)這種電視機(jī)實(shí)際需要多少錢(qián)?

查看答案和解析>>

同步練習(xí)冊(cè)答案