【題目】一個(gè)有進(jìn)水管與出水管的容器,從某時(shí)刻開(kāi)始分鐘內(nèi)只進(jìn)水不出水.在隨后的分鐘內(nèi)既進(jìn)水又出水,直到容器內(nèi)的水量達(dá)到.如圖,坐標(biāo)系中的折線段表示這一過(guò)程中容器內(nèi)的水量(單位:)與時(shí)間(單位:分)之間的關(guān)系.
(1)單獨(dú)開(kāi)進(jìn)水管,每分鐘可進(jìn)水________;
(2)求進(jìn)水管與出水管同時(shí)打開(kāi)時(shí)容器內(nèi)的水量與時(shí)間的函數(shù)關(guān)系式;
(3)當(dāng)容器內(nèi)的水量達(dá)到時(shí),立刻關(guān)閉進(jìn)水管,直至容器內(nèi)的水全部放完.請(qǐng)?jiān)谕蛔鴺?biāo)系中畫出表示放水過(guò)程中容器內(nèi)的水量與時(shí)間關(guān)系的線段,并直接寫出點(diǎn)的坐標(biāo).
【答案】(1);(2);(3)點(diǎn)的坐標(biāo)為.
【解析】
(1)根據(jù)4分鐘水量達(dá)到即可求解;
(2)設(shè)與之間的函數(shù)關(guān)系式為,利用待定系數(shù)法即可求解;
(3)求出出水管每分鐘的出水量,再求出容器內(nèi)的水全部放完的時(shí)間,得到C點(diǎn)坐標(biāo)即可作圖.
(1)單獨(dú)開(kāi)進(jìn)水管,每分鐘可進(jìn)水20÷4=
故答案為:5;
(2)設(shè)與之間的函數(shù)關(guān)系式為,
將,代入中,
得
解,得,
所以,與之間的函數(shù)關(guān)系式為.
(3)設(shè)出水管每分鐘的出水量為a,
題意可得(12-4)×(5-a)=36-20
解得a=3
∴容器內(nèi)的水全部放完的時(shí)間為36÷3=12(分鐘)
∴C
如圖,線段即為所求.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)E是平行四邊形ABCD的邊BC的中點(diǎn),連接AE并延長(zhǎng)交DC的延長(zhǎng)線于點(diǎn)F,連接AC、BF,∠AEC=2∠ABC;(1)求證:四邊形ABFC是矩形;(2)在(1)的條件下,若△AFD是等邊三角形,且邊長(zhǎng)為4,求四邊形ABFC的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】Rt△ABC中,∠C=90°,點(diǎn)D、E分別是△ABC邊AC、BC上的點(diǎn),點(diǎn)P是一動(dòng)點(diǎn).令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.
(1)若點(diǎn)P在線段AB上,如圖(1)所示,且∠α=50°,則∠1+∠2= °;
(2)若點(diǎn)P在邊AB上運(yùn)動(dòng),如圖(2)所示,則∠α、∠1、∠2之間有何關(guān)系?說(shuō)明理由.
(3)若點(diǎn)P在Rt△ABC斜邊BA的延長(zhǎng)線上運(yùn)動(dòng)(CE<CD),則∠α、∠1、∠2之間有何關(guān)系?猜想并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=ax﹣1的圖象與反比例函數(shù)y=的圖象交于A,B兩點(diǎn),與x軸交于點(diǎn)C,與y軸交于點(diǎn)D,已知OA=,tan∠AOC=.
(1)求a,k的值及點(diǎn)B的坐標(biāo);
(2)觀察圖象,請(qǐng)直接寫出不等式ax﹣1≥的解集;
(3)在y軸上存在一點(diǎn)P,使得△PDC與△ODC相似,請(qǐng)你求出P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“綜合與實(shí)踐”學(xué)習(xí)活動(dòng)準(zhǔn)備制作一組三角形,記這些三角形的三邊分別為,,,用記號(hào) 表示一個(gè)滿足條件的三角形,如表示邊長(zhǎng)分別為2,4,4個(gè)單位長(zhǎng)度的一個(gè)三角形.
(1)若這些三角形三邊的長(zhǎng)度為大于0且小于3的整數(shù)個(gè)單位長(zhǎng)度,請(qǐng)用記號(hào)寫出所有滿足條件的三角形;
(2)如圖,是的中線,線段,的長(zhǎng)度分別為2個(gè),6個(gè)單位長(zhǎng)度,且線段的長(zhǎng)度為整數(shù)個(gè)單位長(zhǎng)度,過(guò)點(diǎn)作交的延長(zhǎng)線于點(diǎn)
①求之長(zhǎng);
②請(qǐng)直接用記號(hào)表示.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在下列條件中,不能證明△ABD≌△ACD的是( ).
A.BD=DC, AB=AC B.∠ADB=∠ADC,BD=DC
C.∠B=∠C,∠BAD=∠CAD D. ∠B=∠C,BD=DC
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)P的坐標(biāo)是(a,b),從-2,-1,0,1,2這五個(gè)數(shù)中任取一個(gè)數(shù)作為a的值,再?gòu)挠嘞碌乃膫(gè)數(shù)中任取一個(gè)數(shù)作為b的值,則點(diǎn)P(a,b)在平面直角坐標(biāo)系中第二象限內(nèi)的概率是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,大長(zhǎng)方形是由四個(gè)小長(zhǎng)方形拼成的,請(qǐng)根據(jù)此圖填空:x2+(p+q)x+pq=x2+px+qx+pq=( )( ).
說(shuō)理驗(yàn)證
事實(shí)上,我們也可以用如下方法進(jìn)行變形:
x2+(p+q)x+pq=x2+px+qx+pq=(x2+px)+()= =( )( ).
于是,我們可以利用上面的方法進(jìn)行多項(xiàng)式的因式分解.
嘗試運(yùn)用
例題 把x2+3x+2分解因式.
解:x2+3x+2=x2+(2+1)x+2×1=(x+2)(x+1).
請(qǐng)利用上述方法將下列多項(xiàng)式分解因式:
(1)x2﹣7x+12; (2)(y2+y)2+7(y2+y)﹣18.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有一熱氣球到達(dá)離地面高度為36米的A處時(shí),儀器顯示正前方一高樓頂部B的仰角是37°,底部C的俯角是60°.為了安全飛越高樓,氣球應(yīng)至少再上升多少米?(結(jié)果精確到0.1米)(參考數(shù)據(jù):參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com