【題目】如圖,點(diǎn)E是平行四邊形ABCD的邊BC的中點(diǎn),連接AE并延長(zhǎng)交DC的延長(zhǎng)線于點(diǎn)F,連接AC、BF,AEC=2ABC(1)求證:四邊形ABFC是矩形;(2)(1)的條件下,AFD是等邊三角形,且邊長(zhǎng)為4,求四邊形ABFC的面積。

【答案】1)見(jiàn)解析;(2.

【解析】

1)由ABCD為平行四邊形,根據(jù)平行四邊形的對(duì)邊平行得到ABDC平行,根據(jù)兩直線平行內(nèi)錯(cuò)角相等得到一對(duì)角相等,由EBC的中點(diǎn),得到兩條線段相等,再由對(duì)頂角相等,利用ASA可得出三角形ABE與三角形FCE全等;進(jìn)而得出AB=FC,即可得出四邊形ABFC是平行四邊形,再由直角三角形的判定方法得出△BFC是直角三角形,即可得出平行四邊形ABFC是矩形.

2)由等邊三角形的性質(zhì)得出∠AFC=60°,AF=DF=4,得出CF=CD=2,由矩形的性質(zhì)得出∠ACF=90°,得出AC=CF=2,即可得出四邊形ABFC的面積=ACCF=4

解:(1)∵四邊形ABCD為平行四邊形,

ABDC,

∴∠ABE=ECF,

又∵EBC的中點(diǎn)

BE=CE,

在△ABE和△FCE中,,

∴△ABE≌△FCEASA);

AE=EF,AB=CF,

∴四邊形ABFC是平行四邊形,

∵∠AEC=2ABC=ABC+BAE,

∴∠ABC=BAE,

AE=BE

AE=EFBE=CE,

AF=BC,

∴平行四邊形ABFC是矩形;

2)∵△AFD是等邊三角形,

∴∠AFC=60°AF=DF=4,

CF=CD=2

∵四邊形ABFC是矩形,

∴∠ACF=90°,

AC=CF=2

∴四邊形ABFC的面積=ACCF=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為一種平板電腦保護(hù)套的支架效果圖,AM固定于平板電腦背面,與可活動(dòng)的MB、CB部分組成支架平板電腦的下端N保持在保護(hù)套CB上不考慮拐角處的弧度及平板電腦和保護(hù)套的厚度,繪制成圖其中AN表示平板電腦,M為AN上的定點(diǎn),AN=CB=20 cm,AM=8 cm,MB=MN我們把ANB叫做傾斜角

1當(dāng)傾斜角為45°時(shí),求CN的長(zhǎng);

2按設(shè)計(jì)要求,傾斜角能小于30°嗎?請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知一次函數(shù)y=x-3與反比例函數(shù)y=的圖象相交于點(diǎn)A4n),與x軸相交于點(diǎn)B

1)填空:n的值為 ,k的值為 ;

2)以AB為邊作菱形ABCD,使點(diǎn)Cx軸正半軸上,點(diǎn)D在第一象限,求點(diǎn)D的坐標(biāo);

3)觀察反比函數(shù)y=的圖象,當(dāng)y≥-2時(shí),請(qǐng)直接寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,O的半徑為2,點(diǎn)A的坐標(biāo)為(2,2),直線AB為O的切線,B為切點(diǎn).則B點(diǎn)的坐標(biāo)為( 。

A. (﹣ B. (﹣,1) C. (﹣, D. (﹣1,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,過(guò)平行四邊形ABCD對(duì)角線交點(diǎn)O的直線交ADE,交BCF,若AB=5,BC=6,OE=2,那么四邊形EFCD周長(zhǎng)是(  )

A. 16B. 15C. 14D. 13

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明同學(xué)在學(xué)習(xí)了全等三角形的相關(guān)知識(shí)后發(fā)現(xiàn),只用兩把完全相同的長(zhǎng)方形直尺就可以作出一個(gè)角的平分線.如圖:一把直尺壓住射線OB,另一把直尺壓住射線OA并且與第一把直尺交于點(diǎn)P,小明說(shuō):射線OP就是∠BOA的角平分線.他這樣做的依據(jù)是(  )

A. 角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在角的平分線上

B. 角平分線上的點(diǎn)到這個(gè)角兩邊的距離相等

C. 三角形三條角平分線的交點(diǎn)到三條邊的距離相等

D. 以上均不正確

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,∠B90°,AB3,BC4,AC5

實(shí)踐與操作:過(guò)點(diǎn)A作一條直線,使這條直線將ABC分成面積相等的兩部分,直線與BC交于點(diǎn)D.(尺規(guī)作圖,不寫作法,保留作圖痕跡,標(biāo)清字母)

推理與計(jì)算:求點(diǎn)DAC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已如點(diǎn)A1,1),B-11),C-1,-2),D1,-2),把一根長(zhǎng)為2019個(gè)單位長(zhǎng)度沒(méi)有彈性的細(xì)線(線的相細(xì)忽略不計(jì))的一端固定在A處,并按的規(guī)律緊繞在四邊形ABCD的邊上,則細(xì)線的另一端所在位置的點(diǎn)的坐標(biāo)是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)有進(jìn)水管與出水管的容器,從某時(shí)刻開(kāi)始分鐘內(nèi)只進(jìn)水不出水.在隨后的分鐘內(nèi)既進(jìn)水又出水,直到容器內(nèi)的水量達(dá)到.如圖,坐標(biāo)系中的折線段表示這一過(guò)程中容器內(nèi)的水量(單位:)與時(shí)間(單位:分)之間的關(guān)系.

1)單獨(dú)開(kāi)進(jìn)水管,每分鐘可進(jìn)水________;

2)求進(jìn)水管與出水管同時(shí)打開(kāi)時(shí)容器內(nèi)的水量與時(shí)間的函數(shù)關(guān)系式

3)當(dāng)容器內(nèi)的水量達(dá)到時(shí),立刻關(guān)閉進(jìn)水管,直至容器內(nèi)的水全部放完.請(qǐng)?jiān)谕蛔鴺?biāo)系中畫出表示放水過(guò)程中容器內(nèi)的水量與時(shí)間關(guān)系的線段,并直接寫出點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案