【題目】如圖,點(diǎn)是反比例函數(shù)圖象上的一點(diǎn),過(guò)點(diǎn)軸于點(diǎn),連接,的面積為2.點(diǎn)的坐標(biāo)為.若一次函數(shù)的圖象經(jīng)過(guò)點(diǎn),交雙曲線的另一支于點(diǎn),交軸點(diǎn)

(1)求反比例函數(shù)和一次函數(shù)的解析式;

(2)軸上的一個(gè)動(dòng)點(diǎn),且的面積為5,請(qǐng)求出點(diǎn)的坐標(biāo).

【答案】(1) ;(2)P(0,5)(0,1)

【解析】

1)根據(jù)點(diǎn)A是反比例函數(shù)圖象上的一點(diǎn),過(guò)點(diǎn)AABx軸于點(diǎn)B,連接OA,△AOB的面積為2”即可求得k的值,從而得到反比例函數(shù)的解析式,分別將點(diǎn)A和點(diǎn)D的坐標(biāo)代入反比例函數(shù)的解析式,即可求得點(diǎn)A和點(diǎn)D的坐標(biāo),用待定系數(shù)法求出ab的值,即能求得一次函數(shù)的解析式,
2)△PAC可以分成△PAD和△PCD,分別求出點(diǎn)A和點(diǎn)Cy軸的距離,根據(jù)PAC的面積為5”,求出PD的長(zhǎng)度,結(jié)合點(diǎn)D的坐標(biāo),求出點(diǎn)P的坐標(biāo)即可.

解:(1)根據(jù)題意得:
k=-2×2=-4
即反比例函數(shù)的解析式為,解得:
m=4n=-1,
即點(diǎn)A-1,4),點(diǎn)C4,-1),
把點(diǎn)A-1,4),C4,-1)代入y=ax+b得:,

解得:,

即一次函數(shù)的解析式為:y=-x+3,
2)把x=0代入y=-x+3得:y=3
即點(diǎn)D0,3),
點(diǎn)Ay軸的距離為1,點(diǎn)Cy軸的距離為4
SPAD=×PD×1=PD,
SPCD=×PD×4=2PD
SPAC=SPAD+SPCD=PD=5,
PD=2,
∵點(diǎn)D0,3),
∴點(diǎn)P的坐標(biāo)為(01)或(0,5).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】草莓是云南多地盛產(chǎn)的一種水果,今年某水果銷售店在草莓銷售旺季,試銷售成本為每千克20元的草莓,規(guī)定試銷期間銷售單價(jià)不低于成本單價(jià),也不高于每千克40元,經(jīng)試銷發(fā)現(xiàn),銷售量y(千克)與銷售單價(jià)x(元)符合一次函數(shù)關(guān)系,如圖是y與x的函數(shù)關(guān)系圖象.

(1)求y與x的函數(shù)解析式;

(2)設(shè)該水果銷售店試銷草莓獲得的利潤(rùn)為W元,求W的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD中,∠B60°AB3cm,過(guò)點(diǎn)A作∠EAF60°,分別交DC,BC的延長(zhǎng)線于點(diǎn)E,F,連接EF

1)如圖1,當(dāng)CECF時(shí),判斷△AEF的形狀,并說(shuō)明理由;

2)若△AEF是直角三角形,求CECF的長(zhǎng)度;

3)當(dāng)CE,CF的長(zhǎng)度發(fā)生變化時(shí),△CEF的面積是否會(huì)發(fā)生變化,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為響應(yīng)我市全民閱讀活動(dòng),利用節(jié)假日面向社會(huì)開(kāi)放學(xué)校圖書(shū)館.據(jù)統(tǒng)計(jì),第一個(gè)月進(jìn)館128人次,進(jìn)館人次逐月增加,到第三個(gè)月末累計(jì)進(jìn)館608人次,若進(jìn)館人次的月平均增長(zhǎng)率相同.

1)求進(jìn)館人次的月平均增長(zhǎng)率;

2)因條件限制,學(xué)校圖書(shū)館每月接納能力不超過(guò)500人次,在進(jìn)館人次的月平均增長(zhǎng)率不變的條件下,校圖書(shū)館能否接納第四個(gè)月的進(jìn)館人次,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)為正六邊形的中心,點(diǎn)中點(diǎn),以點(diǎn)為圓心,以的長(zhǎng)為半徑畫(huà)弧得到扇形,點(diǎn)上,以點(diǎn)為圓心,以的長(zhǎng)為半徑畫(huà)弧得到扇形,把扇形的兩條半徑重合,圍成圓錐,將此圓錐的底面半徑記為;將扇形以同樣方法圍成的圓錐的底面半徑記為,則=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形為平行四邊形,平分于點(diǎn),過(guò)點(diǎn),交于點(diǎn),連接

1)求證:平分;

2)若,四邊形與四邊形相似,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,點(diǎn)Ax軸上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)Ax軸的垂線PA交雙曲線于點(diǎn)P,連接OP.

1)當(dāng)點(diǎn)Ax軸上的正方向上運(yùn)動(dòng)時(shí),的面積是否發(fā)生變化?若不變,請(qǐng)求出的面積;若變化,請(qǐng)說(shuō)明理由.

2)如圖2,在x軸上點(diǎn)A的右側(cè)有一點(diǎn)D,過(guò)點(diǎn)Dx軸的垂線DB交雙曲線于點(diǎn)B,連接BOAP于點(diǎn)C,設(shè)的面積為,梯形BCAD的面積為,則的大小關(guān)系是________(選填“>”“=”或“<”)

3)如圖3,PO的延長(zhǎng)線與雙曲線的另一個(gè)交點(diǎn)是F,作FH垂直于x軸,垂足為H,連接AF,PH,試說(shuō)明四邊形APHF的面積為常數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=mx+n(m≠0)的圖象與反比例函數(shù)y=(k≠0)的圖象交于第一、三象限內(nèi)的A、B兩點(diǎn),與y軸交于點(diǎn)C,過(guò)點(diǎn)B作BMx軸,垂足為M,BM=OM,OB=2,點(diǎn)A的縱坐標(biāo)為4.

(1)求該反比例函數(shù)和一次函數(shù)的解析式;

(2)連接MC,求四邊形MBOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一輪船以30km/h的速度由西向東航行,在途中接到臺(tái)風(fēng)警報(bào),臺(tái)風(fēng)中心正以20km/h的速度由南向北移動(dòng).已知距臺(tái)風(fēng)中心200km的區(qū)域(包括邊界)都屬于受臺(tái)風(fēng)影響區(qū).當(dāng)輪船接到臺(tái)風(fēng)警報(bào)時(shí),測(cè)得BC=500kmBA=300km

問(wèn):(1)如果輪船不改變航向,輪船會(huì)不會(huì)進(jìn)入臺(tái)風(fēng)影響區(qū)?

(2)若輪船進(jìn)入臺(tái)風(fēng)影響區(qū),那么從接到警報(bào)開(kāi)始,經(jīng)多少時(shí)間就進(jìn)入臺(tái)風(fēng)影響區(qū)?(結(jié)果精確到0.01h)

查看答案和解析>>

同步練習(xí)冊(cè)答案