【題目】在矩形ABCD中,AD=3,CD=4,點E在CD上,且DE=1.
(1)感知:如圖①,連接AE,過點E作EF丄AE,交BC于點F,連接AE,易證:△ADE≌△ECF(不需要證明);
(2)探究:如圖②,點P在矩形ABCD的邊AD上(點P不與點A、D重合),連接PE,過點E作EF⊥PE,交BC于點F,連接PF.求證:△PDE和△ECF相似;
(3)應用:如圖③,若EF交AB于點F,EF丄PE,其他條件不變,且△PEF的面積是6,則AP的長為_____.
【答案】3﹣
【解析】試題分析:感知:先利用矩形性質得:∠D=∠C=90°,再利用同角的余角相等得:∠DAE=∠FEC,根據已知邊的長度計算出AD=CE=3,則由ASA證得:△ADE≌△ECF;
探究:利用兩角相等證明△PDE∽△ECF;
應用:作輔助線,構建如圖②一樣的相似三角形,利用探究得:△PDE∽△EGF,則 =,所以 =,再利用△PEF的面積是6,列式可得:PEEF=12,兩式結合可求得PE的長,利用勾股定理求PD,從而得出AP的長.
試題解析:證明:感知:如圖①.∵四邊形ABCD為矩形,∴∠D=∠C=90°,∴∠DAE+∠DEA=90°.∵EF⊥AE,∴∠AEF=90°,∴∠DEA+∠FEC=90°,∴∠DAE=∠FEC.∵DE=1,CD=4,∴CE=3.∵AD=3,∴AD=CE,∴△ADE≌△ECF(ASA);
探究:如圖②.∵四邊形ABCD為矩形,∴∠D=∠C=90°,∴∠DPE+∠DEP=90°.∵EF⊥PE,∴∠PEF=90°,∴∠DEP+∠FEC=90°,∴∠DPE=∠FEC,∴△PDE∽△ECF;
應用:如圖③,過F作FG⊥DC于G.∵四邊形ABCD為矩形,∴AB∥CD,∴FG=BC=3.∵PE⊥EF,∴S△PEF=PEEF=6,∴PEEF=12,同理得:△PDE∽△EGF,∴=,∴=,∴EF=3PE,∴3PE2=12,∴PE=±2.∵PE>0,∴PE=2.在Rt△PDE中,由勾股定理得:PD==,∴AP=AD﹣PD=3﹣.故答案為:3﹣.
科目:初中數(shù)學 來源: 題型:
【題目】某商店分兩次購進A,B兩種商品進行銷售,兩次購進同一種商品的進價相同,具體情況如下表所示:
購進數(shù)量(件) | 購進所需費用(元) | ||
A | B | ||
第一次 | 20 | 30 | 2800 |
第二次 | 30 | 20 | 2200 |
(1)求A、B兩種商品每件的進價分別是多少元?
(2)商場決定A種商品以每件30元出售,B種商品以每件100元出售.為滿足市場需求,需購進A、B兩種商品共1000件,且A種商品的數(shù)量不少于B種商品數(shù)量的4倍,請你求出獲利最大的進貨方案,并確定最大利潤.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知m,n(m<n)是關于x的方程(x–a)(x–b)=2的兩根,若a<b,則下列判斷正確的是
A. a<m<b<n B. m<a<n<b
C. a<m<n<d D. m<a<b<n
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知△ABC中,∠BAC=90°,AB=AC,AE是過A的一條直線。且點B、C在AE的兩側,BD⊥AE于D,CE⊥AE于E,試設明:
(1)BD=DE+CE;
(2)若直線AE繞A點旋轉到圖2位置(BD<CE),其余條件不變時,則BD與DE、CE的關系如何?
(3)若直線AE繞A點旋轉到圖3位置(CE<BD),其余條件不變時,則BD與DE、CE的關系 。(直接寫出結果)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知點A(﹣1,0),點B(3,0).在第三象限內有一點M(﹣2,m).
(1)請用含m的式子表示△ABM的面積;
(2)當m=-時,在y軸上有一點P,使△BMP的面積與△ABM的面積相等,請求出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P是的角平分線OC上一點,PNOB于點N,點M是線段ON上一點,已知OM=3,ON=4,點D為OA上一點,若滿足PD=PM,則OD的長度為________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如今很多初中生購買飲品飲用,既影響身體健康又給家庭增加不必要的開銷,為此數(shù)學興趣小組對本班同學一天飲用飲品的情況進行了調查,大致可分為四種:
A:自帶白開水;B:瓶裝礦泉水;C:碳酸飲料;D:非碳酸飲料.
根據統(tǒng)計結果繪制如下兩個統(tǒng)計圖,根據統(tǒng)計圖提供的信息,解答下列問題:
(1)這個班級有多少名同學?并補全條形統(tǒng)計圖.
(2)若該班同學每人每天只飲用一種飲品(每種僅限1瓶,價格如下表),則該班同學用于飲品上的人均花費是多少元?
飲品名稱 | 自帶白開水 | 瓶裝礦泉水 | 碳酸飲料 | 非碳酸飲料 |
平均價格(元/瓶) | 0 | 2 | 3 | 4 |
(3)若我市約有初中生4萬人,估計我市初中生每天用于飲品上的花費是多少元?
(4)為了養(yǎng)成良好的生活習慣,班主任決定在自帶白開水的5名同學(男生2人,女生3人)中隨機抽取2名同學做良好習慣監(jiān)督員,請用列表法或樹狀圖法求出恰好抽到2名女生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用直尺和圓規(guī)作一個角等于已知角的示意圖如下,則說明∠A′O′B′=∠AOB的依據是( )
A.(S.S.S.) B.(S.A.S.) C.(A.S.A.) D.(A.A.S.)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:在△ABC中,∠ACB=90°,AC=BC,過點C在△ABC外作直線MN,AM⊥MN于M,BN⊥MN于N.
(1)求證:MN=AM+BN.
(2)若過點C在△ABC內作直線MN,AM⊥MN于M,BN⊥MN于N,則AM、BN與MN之間有什么關系?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com