【題目】如圖,拋物線經(jīng)過點(1,0),對稱軸為.則下列結(jié)論:①;② ;③; ④.其中所有正確的結(jié)論是( )
A. ①③ B. ②③ C. ②③④ D. ②④
【答案】C
【解析】
①根據(jù)開口向下得出a<0,根據(jù)對稱軸在y軸右側(cè),得出b>0,根據(jù)圖象與y軸的交點在y軸的正半軸上,得出c>0,從而得出abc<0,進而判斷①錯誤;
②由拋物線y=ax2+bx+c經(jīng)過點(-1,0),即可判斷②正確;
③由圖可知,x=2時,y<0,即4a+2b+c<0,把b=a+c代入即可判斷③正確;
④由圖可知,x=2時,y<0,即4a+2b+c<0,把c=b-a代入即可判斷④正確.
解:①∵二次函數(shù)圖象的開口向下,
∴a<0,
∵二次函數(shù)圖象的對稱軸在y軸右側(cè),
∴->0,
∴b>0,
∵二次函數(shù)的圖象與y軸的交點在y軸的正半軸上,
∴c>0,
∴abc<0,故①錯誤;
②∵拋物線y=ax2+bx+c經(jīng)過點(-1,0),
∴a-b+c=0,故②正確;
③∵a-b+c=0,∴b=a+c.
由圖可知,x=2時,y<0,即4a+2b+c<0,
∴4a+2(a+c)+c<0,
∴6a+3c<0,∴2a+c<0,故③正確;
④∵a-b+c=0,∴c=b-a.
由圖可知,x=2時,y<0,即4a+2b+c<0,
∴4a+2b+b-a<0,
∴3a+3b<0,∴a+b<0,故④正確.
故選:C.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直線l上依次擺放著七個正方形,已知斜放置的三個正方形的面積分別為1,1.21,1.44,正放置的四個正方形的面積為S1、S2、S3、S4,則S1+2S2+2S3+S4=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:已知等邊△ABC中,D是AC的中點,E是BC延長線上的一點,且CE=CD,DM⊥BC,垂足為M,
(1)求證:M是BE的中點.
(2)若CD=1,DE=,求△ABD的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(10分)如圖下圖所示,已知AB//CD, ∠B=30°,∠D=120°;
(1)若∠E=60°,則∠E=______;
(2)請?zhí)剿鳌螮與∠F之間滿足的數(shù)量關(guān)系?說明理由.
(3)如下圖所示,已知EP平分∠BEF,FG平分∠EFD,反向延長FG交EP于點P,求∠P的度數(shù);
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC在平面直角坐標系中的位置如圖所示.
(1)畫出△ABC關(guān)于y軸對稱的△A1B1C1;
(2)將△ABC向右平移6個單位,作出平移后的△A2B2C2,并寫出△A2B2C2各頂點的坐標;
(3)觀察△A1B1C1和△A2B2C2,它們是否關(guān)于某條直線對稱?若是,請在圖上畫出這條對稱軸.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC和△ADE都是等腰直角三角形,且∠BAC=∠DAE=90°.
(1)如圖①,點D、E分別在線段AB、AC上. 請直接寫出線段BD和CE的位置關(guān)系: ;
(2)將圖①中的△ADE繞點A逆時針旋轉(zhuǎn)到如圖②的位置時,(1)中的結(jié)論是否成立?若成立,請利用圖②證明;若不成立,請說明理由;
(3)如圖③,取BC的中點F,連接AF,當點D落在線段BC上時,發(fā)現(xiàn)AD恰好平分∠BAF,此時在線段AB上取一點H,使BH=2DF,連接HD,猜想線段HD與BC的位置關(guān)系并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,在平面直角坐標系中,點、分別在軸和軸上,軸,.點從點出發(fā),以1cm/s的速度沿邊勻速運動,點從點出發(fā),沿線段勻速運動.點與點同時出發(fā),其中一點到達終點,另一點也隨之停止運動.設(shè)點運動的時間為(s),的面積為(cm2),己知與之間的函數(shù)關(guān)系如圖②中的曲線段、線段與曲線段.
(1)點的運動速度為 cm/s,點的坐標為 ;
(2)求曲線段的函數(shù)解析式;
(3)當為何值時,的面積是四邊形的面積的
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C是⊙O上一點,AD與過點C的切線垂直,垂足為點D,直線DC與AB的延長線相交于點P,弦CE平分∠ACB,交AB點F,連接BE.
(1)求證:AC平分∠DAB;
(2)求證:PC=PF;
(3)若tan∠ABC=,AB=14,求線段PC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,△ABC是等邊三角形,點P是BC上一動點(點P與點B、C不重合),過點P作PM∥AC交AB于M,PN∥AB交AC于N,連接BN、CM.
(1)求證:PM+PN=BC;
(2)在點P的位置變化過程中,BN=CM是否成立?試證明你的結(jié)論;
(3)如圖②,作ND∥BC交AB于D,則圖②成軸對稱圖形,類似地,請你在圖③中添加一條或幾條線段,使圖③成軸對稱圖形(畫出一種情形即可).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com