【題目】如圖,在△ABC中,∠ACB=45°,點(diǎn)D在AB上,點(diǎn)E在AC的延長(zhǎng)線上,ED⊥AB,ED交BC于點(diǎn)F,AB=DF,3DF=5EF,CF=l,則AC=_____.
【答案】
【解析】
作GB⊥AB,GF⊥DE,GB與GF交于點(diǎn)G,連接GC、GE.四邊形BDFG是矩形,去確定A、B、G、C四點(diǎn)共圓。得到FG=FE,又作HF⊥CF交CG于H,證明∴△GFH≌△EFC
再根據(jù)三角函數(shù)定義去設(shè)未知數(shù)求值即可.
如圖,作GB⊥AB,GF⊥DE,GB與GF交于點(diǎn)G,連接GC、GE.
∵ED⊥AB于D,則四邊形BDFG是矩形,
∴BG=DF,GF=BD,
∵AB=DF,
∴AB=BG,
∴∠AGB=45°,
∵∠ACB=45°,
∴∠ACB=∠AGB,
∴A、B、G、C四點(diǎn)共圓,
∴∠ACG=∠ABG=90°,∠GCB=∠ACB=45°,
∴∠GFE=∠GCE=90°,
∴G、F、C、E四點(diǎn)共圓,
∴∠FGC=∠FEC,∠FEG=∠FCG=45°,
∴FG=FE,
作HF⊥CF交CG于H,則∠CFH=∠GFE=90°,FC=FH,
∴∠GFH=∠EFC,
在△GFH和△EFC中:
∴△GFH≌△EFC(AAS),
∴GH=CE.
∵3DF=5EF,
∴3DF=5FG=5BD,
∴∠tan∠DFB==,
∴tan∠CGE==tan∠CFE=∠tan∠DFB=,
設(shè)CE=GH=3x,則CG=5x,所以CH=2x,
∵CF=1,
∴CH=,
∴2x=,
∴x=,
∴CG=5x=,
∵tan∠CAG==tan∠FBG=∠tan∠DFB=,
∴CA=CG=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖1的矩形ABCD中,E點(diǎn)在AD上,且AB=,AE=1.今分別以BE、CE為折線,將A、D向BC的方向折過(guò)去,圖2為對(duì)折后A、B、C、D、E五點(diǎn)均在同一平面上的位置圖.若圖2中,∠AED=15°,則∠AEC的度數(shù)是( )
A.10°B.15°C.20°D.22.5°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為4,點(diǎn)E,F分別在邊AB,AD上,且∠ECF=45°,CF的延長(zhǎng)線交BA的延長(zhǎng)線于點(diǎn)G,CE的延長(zhǎng)線交DA的延長(zhǎng)線于點(diǎn)H,連接AC,EF.,GH.
(1)填空:∠AHC ∠ACG;(填“>”或“<”或“=”)
(2)線段AC,AG,AH什么關(guān)系?請(qǐng)說(shuō)明理由;
(3)設(shè)AE=m,
①△AGH的面積S有變化嗎?如果變化.請(qǐng)求出S與m的函數(shù)關(guān)系式;如果不變化,請(qǐng)求出定值.
②請(qǐng)直接寫出使△CGH是等腰三角形的m值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在△ABC中,∠B=90°,AB=5cm,BC=7cm.點(diǎn)P從點(diǎn)A開始沿AB邊向點(diǎn)B以1cm/s的速度移動(dòng),點(diǎn)Q從點(diǎn)B開始沿BC邊向點(diǎn)C以2cm/s的速度移動(dòng).
(1)如果P,Q分別從A,B同時(shí)出發(fā),那么幾秒后,△PBQ的面積等于6cm2?
(2)在(1)中,△PQB的面積能否等于8cm2?說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c與x軸交于點(diǎn)A和點(diǎn)B,與y軸交于點(diǎn)C,且OA=2,OB=OC=6,點(diǎn)D是拋物線的頂點(diǎn),過(guò)點(diǎn)D作x軸的垂線,垂足為E.
(1)求拋物線的解析式及點(diǎn)D的坐標(biāo);
(2)連接BD,若點(diǎn)F是拋物線上的動(dòng)點(diǎn),當(dāng)∠FBA=∠BDE時(shí),求點(diǎn)F的坐標(biāo):
(3)若點(diǎn)M是拋物線上的動(dòng)點(diǎn),過(guò)點(diǎn)M作MN∥x軸與拋物線交于點(diǎn)N,點(diǎn)P在x軸上,點(diǎn)Q在坐標(biāo)平面內(nèi),以線段MN為對(duì)角線作正方形MPNQ,請(qǐng)求出點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:拋物線y=ax2﹣3ax+4與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),且AB=5.
(1)如圖1,求拋物線的解析式;
(2)如圖2,拋物線與y軸交于點(diǎn)C,F是第四象限拋物線上一點(diǎn),FD⊥x軸,垂足為D,E是FD延長(zhǎng)線上一點(diǎn),ER⊥y軸,垂足為R,FA交y軸于點(diǎn)Q,若BC∥RD.求證:OQ=CR;
(3)在(2)的條件下,在RD上取一點(diǎn)M,延長(zhǎng)OM交線段DE于點(diǎn)N,RE交拋物線于點(diǎn)T(點(diǎn)T在拋物線對(duì)稱軸的右側(cè)),連接MT、NT,且TM⊥OM,=,H是AF上一點(diǎn),當(dāng)∠DHF=135°時(shí),求點(diǎn)H的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合與實(shí)踐
問(wèn)題情境:在數(shù)學(xué)活動(dòng)課上,老師出示了這樣一個(gè)問(wèn)題:如圖1,在矩形ABCD中,AD=2AB,E是AB延長(zhǎng)線上一點(diǎn),且BE=AB,連接DE,交BC于點(diǎn)M,以DE為一邊在DE的左下方作正方形DEFG,連接AM.試判斷線段AM與DE的位置關(guān)系.
探究展示:勤奮小組發(fā)現(xiàn),AM垂直平分DE,并展示了如下的證明方法:
證明:∵BE=AB,∴AE=2AB.
∵AD=2AB,∴AD=AE.
∵四邊形ABCD是矩形,∴AD∥BC.
∴.(依據(jù)1)
∵BE=AB,∴.∴EM=DM.
即AM是△ADE的DE邊上的中線,
又∵AD=AE,∴AM⊥DE.(依據(jù)2)
∴AM垂直平分DE.
反思交流:
(1)①上述證明過(guò)程中的“依據(jù)1”“依據(jù)2”分別是指什么?
②試判斷圖1中的點(diǎn)A是否在線段GF的垂直平分線上,請(qǐng)直接回答,不必證明;
(2)創(chuàng)新小組受到勤奮小組的啟發(fā),繼續(xù)進(jìn)行探究,如圖2,連接CE,以CE為一邊在CE的左下方作正方形CEFG,發(fā)現(xiàn)點(diǎn)G在線段BC的垂直平分線上,請(qǐng)你給出證明;
探索發(fā)現(xiàn):
(3)如圖3,連接CE,以CE為一邊在CE的右上方作正方形CEFG,可以發(fā)現(xiàn)點(diǎn)C,點(diǎn)B都在線段AE的垂直平分線上,除此之外,請(qǐng)觀察矩形ABCD和正方形CEFG的頂點(diǎn)與邊,你還能發(fā)現(xiàn)哪個(gè)頂點(diǎn)在哪條邊的垂直平分線上,請(qǐng)寫出一個(gè)你發(fā)現(xiàn)的結(jié)論,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是等邊三角形,,在上且,是直線 上一動(dòng)點(diǎn),線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn),得到線段,當(dāng)點(diǎn)運(yùn)動(dòng)時(shí), 則線段的最小值是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列兩則材料,回答問(wèn)題
材料一:我們將+與﹣稱為一對(duì)“對(duì)偶式”因?yàn)椋?/span>+)()=()2=a﹣b,所以構(gòu)造“對(duì)偶式”相乘可以將+與﹣中的“”去掉.
例如:已知=2,求+的值,
解:()(+)=(25﹣x)﹣(15﹣x)=10,
∵﹣=2,
∴+=5,
材料二:如圖1,點(diǎn)A(x1,y1),點(diǎn)B(x2,y2),以AB為斜邊作Rt△ABC,則C(x2,y1)AC=|x1﹣x2|,BC=|y1﹣y2|.所以AB=.反之,可將代數(shù)式的值看作點(diǎn)A(x1,y1)到點(diǎn)B(x2,y2)的距離,例如===,所以可將代數(shù)式的值看作點(diǎn)(x,y)到點(diǎn)(1,﹣1)的距離.
(1)利用材料一,解關(guān)于x的方程:=5,其中x≤10;
(2)利用材料二,求代數(shù)式+ 的最小值,并求出此時(shí)y與x的函數(shù)關(guān)系式,寫出x的取值范圍;
(3)在(2)的條件下,設(shè)該式子取得最小值時(shí)的圖形端點(diǎn)為M、N,直接寫出將y與x的函數(shù)圖象向左平移_____個(gè)單位時(shí)恰好經(jīng)過(guò)點(diǎn)Q(﹣2,),并直接判定此時(shí)△MNQ的形狀是______三角形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com